Guihong Zhao , Dezhi Zhang , Yaqun Tang , Xiaoqing Hu , Xiaoyuan Wang
{"title":"Recent advances on engineering Escherichia coli and Corynebacterium glutamicum for efficient production of L-threonine and its derivatives","authors":"Guihong Zhao , Dezhi Zhang , Yaqun Tang , Xiaoqing Hu , Xiaoyuan Wang","doi":"10.1016/j.ymben.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>L-threonine, one of the three major amino acids, plays a vital role in various industries such as food, feed, pharmaceuticals, and cosmetics. Currently, the fermentation-based production of L-threonine has evolved into an efficient, cost-effective, and environmentally friendly industrial process. <em>Escherichia coli</em> and <em>Corynebacterium glutamicum</em>, as the industrial workhorses of amino acids production, have long been widely studied due to their well-established genetic backgrounds and powerful molecular tools. This review focuses on recent advances in the microbial production of L-threonine by metabolic engineering. From three key modules, including L-threonine synthesis module, central metabolism module and global regulation module, we provide a comprehensive analysis on the entire metabolic pathway of L-threonine and the global regulation of the production process. Furthermore, we systematically summarize biotransformation methods for producing high-value derivatives of L-threonine, thereby broadening the application scope and market potential of L-threonine. Overall, this review shows many effective strategies for the biosynthesis of L-threonine, and offers guidance for the microbial production of L-aspartate family amino acids and their derivatives.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"90 ","pages":"Pages 1-15"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000278","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
L-threonine, one of the three major amino acids, plays a vital role in various industries such as food, feed, pharmaceuticals, and cosmetics. Currently, the fermentation-based production of L-threonine has evolved into an efficient, cost-effective, and environmentally friendly industrial process. Escherichia coli and Corynebacterium glutamicum, as the industrial workhorses of amino acids production, have long been widely studied due to their well-established genetic backgrounds and powerful molecular tools. This review focuses on recent advances in the microbial production of L-threonine by metabolic engineering. From three key modules, including L-threonine synthesis module, central metabolism module and global regulation module, we provide a comprehensive analysis on the entire metabolic pathway of L-threonine and the global regulation of the production process. Furthermore, we systematically summarize biotransformation methods for producing high-value derivatives of L-threonine, thereby broadening the application scope and market potential of L-threonine. Overall, this review shows many effective strategies for the biosynthesis of L-threonine, and offers guidance for the microbial production of L-aspartate family amino acids and their derivatives.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.