Determination of perfluoroalkyl carboxylic acids in mice serum and tissue by dispersive solid-phase extraction based on fluorine-functionalized covalent organic frameworks coupled with UPLC-MS/MS
Jinni Zhang , Songtao Li , Xiaojing Li , Canrong Chen , Wen Xie , Yanhui Zhong , Zian Lin , Zongwei Cai
{"title":"Determination of perfluoroalkyl carboxylic acids in mice serum and tissue by dispersive solid-phase extraction based on fluorine-functionalized covalent organic frameworks coupled with UPLC-MS/MS","authors":"Jinni Zhang , Songtao Li , Xiaojing Li , Canrong Chen , Wen Xie , Yanhui Zhong , Zian Lin , Zongwei Cai","doi":"10.1016/j.chroma.2025.465820","DOIUrl":null,"url":null,"abstract":"<div><div>Perfluoroalkyl carboxylic acids (PFCAs) are a class of persistent organic pollutants (POPs), which posed various hazards to organisms, including reproductive, developmental, neurological, and immunological toxicity. Consequently, developing an analytical method aimed at achieving highly sensitive detection of trace amounts of PFCAs in complex samples is clearly of great significance. Herein, the Fluorine-functionalized covalent organic framework (F-COF) was synthesized at ambient temperature, which has the advantages of high specific surface area (1297.7 m<sup>2</sup> g<sup>-1</sup>), suitable selective adsorption pore size and good stability. Based on the multiple effects of suitable pore size, fluorine-fluorine interactions and hydrophobic interactions, F-COF exhibited high adsorption performance towards PFCAs. Accordingly, the method of F-COF-based dispersive solid-phase extraction (dSPE) coupled with UPLC-MS/MS was developed for the quantitative analysis of 5 PFCAs in complex biological samples. The results showed that the good linearity for the 5 PFCAs within the concentration ranges of 0.4 to 10<sup>4</sup> ng L<sup>-1</sup>, with correlation coefficients (r) all greater than 0.9993. The enrichment factors (EFs) ranged from 11.4 to 22.3 folds, and the limits of detection (LODs) were 0.11 to 0.17 ng L<sup>-1</sup>. The established method provided a powerful tool for the enrichment and detection of PFCAs in mice serum and tissue. F-COF holds promising application prospects as a solid-phase extraction material for efficient enrichment separation and detection of PFCAs.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1747 ","pages":"Article 465820"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325001682","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are a class of persistent organic pollutants (POPs), which posed various hazards to organisms, including reproductive, developmental, neurological, and immunological toxicity. Consequently, developing an analytical method aimed at achieving highly sensitive detection of trace amounts of PFCAs in complex samples is clearly of great significance. Herein, the Fluorine-functionalized covalent organic framework (F-COF) was synthesized at ambient temperature, which has the advantages of high specific surface area (1297.7 m2 g-1), suitable selective adsorption pore size and good stability. Based on the multiple effects of suitable pore size, fluorine-fluorine interactions and hydrophobic interactions, F-COF exhibited high adsorption performance towards PFCAs. Accordingly, the method of F-COF-based dispersive solid-phase extraction (dSPE) coupled with UPLC-MS/MS was developed for the quantitative analysis of 5 PFCAs in complex biological samples. The results showed that the good linearity for the 5 PFCAs within the concentration ranges of 0.4 to 104 ng L-1, with correlation coefficients (r) all greater than 0.9993. The enrichment factors (EFs) ranged from 11.4 to 22.3 folds, and the limits of detection (LODs) were 0.11 to 0.17 ng L-1. The established method provided a powerful tool for the enrichment and detection of PFCAs in mice serum and tissue. F-COF holds promising application prospects as a solid-phase extraction material for efficient enrichment separation and detection of PFCAs.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.