Multifrequency Omnibus Change Detection in Covariance Matrix PolSAR Data

Allan A. Nielsen;Henning Skriver;Knut Conradsen
{"title":"Multifrequency Omnibus Change Detection in Covariance Matrix PolSAR Data","authors":"Allan A. Nielsen;Henning Skriver;Knut Conradsen","doi":"10.1109/LGRS.2025.3541861","DOIUrl":null,"url":null,"abstract":"In this letter we work with truly multitemporal change detection in multilooked, multifrequency polarimetric synthetic aperture radar (polSAR) data in the covariance matrix formulation. We apply recent general results on better approximations than the usual chi-squared distribution for the probability distributions associated with maximum likelihood ratio test statistics for equality of several block-diagonal covariance matrices with complex Wishart distributed blocks. We demonstrate the superiority of the new approximations by means of generated data and airborne EMISAR data from four time points covering an agricultural region in Denmark. Results from the generated data show the importance of applying the new approximations in the no change situation. This use is more important for low equivalent number of looks (ENL) and for long time series (i.e., high number of degrees of freedom). Results from the generated data example are confirmed by results from the case with EMISAR data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10884785/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter we work with truly multitemporal change detection in multilooked, multifrequency polarimetric synthetic aperture radar (polSAR) data in the covariance matrix formulation. We apply recent general results on better approximations than the usual chi-squared distribution for the probability distributions associated with maximum likelihood ratio test statistics for equality of several block-diagonal covariance matrices with complex Wishart distributed blocks. We demonstrate the superiority of the new approximations by means of generated data and airborne EMISAR data from four time points covering an agricultural region in Denmark. Results from the generated data show the importance of applying the new approximations in the no change situation. This use is more important for low equivalent number of looks (ENL) and for long time series (i.e., high number of degrees of freedom). Results from the generated data example are confirmed by results from the case with EMISAR data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在这封信中,我们以协方差矩阵的形式研究了多视角、多频率偏振合成孔径雷达(polSAR)数据中的真正多时变化检测。我们应用了最新的一般结果,即对于具有复杂 Wishart 分布块的多个块对角协方差矩阵的相等性,与最大似然比检验统计相关的概率分布,比通常的秩方分布有更好的近似值。我们通过生成的数据和来自丹麦农业地区四个时间点的机载 EMISAR 数据证明了新近似值的优越性。生成数据的结果显示了在无变化情况下应用新近似值的重要性。对于低等效观测次数(ENL)和长时间序列(即高自由度),这种应用更为重要。生成数据示例的结果得到了 EMISAR 数据案例结果的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Size-Aware Local Contrast Measure for Tiny Infrared Target Detection Lightweight SAR Ship Detection via Pearson Correlation and Nonlocal Distillation UNMamba: Cascaded Spatial–Spectral Mamba for Blind Hyperspectral Unmixing Parallel Perceptual Attention and Multifrequency Matching Network for UAV Tracking Parcel-Level Mapping of Artificial Forests Along the Middle Reach Valley of Yarlung Tsangpo River Based on Deep Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1