ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2025-03-01 DOI:10.1007/s11128-025-04696-8
Vaishali Gulati, Shivanshu Siyanwal,  Arvind, Kavita Dorai
{"title":"ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor","authors":"Vaishali Gulati,&nbsp;Shivanshu Siyanwal,&nbsp; Arvind,&nbsp;Kavita Dorai","doi":"10.1007/s11128-025-04696-8","DOIUrl":null,"url":null,"abstract":"<div><p>We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04696-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via support vector machines (SVMs) and K-nearest neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三量子比特 NMR 量子处理器中对多方纠缠的 ANN 增强检测
我们使用人工神经网络(ANN)模型来识别随机局部操作和经典通信(SLOCC)下六个不等价类中的一个实验生成的三量子比特纯态的纠缠类。人工神经网络模型还能够检测到状态中真正的多部纠缠(GME)的存在。我们应用数据科学技术来降低问题的维数,这对应于需要计算的密度矩阵元素的数量的减少。首先在包含随机生成状态的模拟数据集上训练人工神经网络模型,然后在以规范形式投射并在核磁共振(NMR)量子处理器上生成的噪声实验三量子位态上进行测试和验证。我们通过支持向量机(svm)和k近邻(KNN)算法对人工神经网络模型进行基准测试,并将基于人工神经网络的纠缠分类结果与现有的三量子比特SLOCC纠缠分类方案(如3-缠结和相关张量)进行比较。我们的研究结果表明,人工神经网络模型仅使用少数密度矩阵元素的先验知识作为输入,就可以高精度地进行GME检测和SLOCC类别识别。由于人工神经网络模型可以很好地处理减少的输入数据集,因此它是一种有吸引力的方法,用于在有限的实验数据集的现实情况下进行纠缠分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
N qubits can be entangled in two different ways Photonic spin Hall shift manipulation using the Kerr nonlinearity effect Galois duals of 1-generator quasi-twisted codes and their applications in quantum codes construction Probability and fidelity of teleportation in a two-mode continuous-variable cluster state via a finite-resolution measurement device Non-standard quantum algebra \(\mathcal {U}_h (\mathfrak {sl}(2, \mathbb {R}))\) and h-Dicke states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1