Engineering Mice to Study Human Immunity.

IF 26.9 1区 医学 Q1 IMMUNOLOGY Annual review of immunology Pub Date : 2025-02-28 DOI:10.1146/annurev-immunol-082523-124415
Esen Sefik, Tianli Xiao, Michael Chiorazzi, Ian Odell, Fengrui Zhang, Kriti Agrawal, Goran Micevic, Richard A Flavell
{"title":"Engineering Mice to Study Human Immunity.","authors":"Esen Sefik, Tianli Xiao, Michael Chiorazzi, Ian Odell, Fengrui Zhang, Kriti Agrawal, Goran Micevic, Richard A Flavell","doi":"10.1146/annurev-immunol-082523-124415","DOIUrl":null,"url":null,"abstract":"<p><p>Humanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.</p>","PeriodicalId":8271,"journal":{"name":"Annual review of immunology","volume":" ","pages":""},"PeriodicalIF":26.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-immunol-082523-124415","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Humanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
携带人类造血和免疫系统的人源化小鼠极大地促进了我们对人类免疫反应和免疫疾病的了解。这些小鼠是通过将人类造血干细胞和祖细胞移植到免疫受损的小鼠宿主体内而产生的,这些宿主经过进一步改造以支持人类造血和免疫细胞的生长。本文探讨了小鼠的基因修饰,这些基因修饰可增强异种耐受性、促进人类造血和免疫,并实现带有常驻免疫细胞的人类组织的异种移植。我们还讨论了人类免疫系统的基因编辑,举例说明了人源化小鼠与人源化器官如何为机理研究建立疾病模型,并强调了这些模型在增进器官生物学知识、病原体免疫反应和癌症治疗临床前药物测试方面的作用。将多组学和最先进的方法与人源化小鼠模型相结合,对于将现有人类数据与因果关系联系起来至关重要,并有望极大地推动机理研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of immunology
Annual review of immunology 医学-免疫学
CiteScore
57.20
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Immunology, in publication since 1983, focuses on basic immune mechanisms and molecular basis of immune diseases in humans. Topics include innate and adaptive immunity; immune cell development and differentiation; immune control of pathogens (viruses, bacteria, parasites) and cancer; and human immunodeficiency and autoimmune diseases. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Central Nervous System Macrophages in Health and Disease. The Integrated Pulmonary Immune Response to Pneumonia. The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair. Engineering Mice to Study Human Immunity. Macrophage Differentiation and Metabolic Adaptation in Mycobacterial Infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1