Qiumin Feng, Zejin Lin, Danhui Zhao, Mengzhao Li, Sheng Yang, Andy Peng Xiang, Congting Ye, Chengguo Yao
{"title":"Functional inhibition of core spliceosomal machinery activates intronic premature cleavage and polyadenylation of pre-mRNAs.","authors":"Qiumin Feng, Zejin Lin, Danhui Zhao, Mengzhao Li, Sheng Yang, Andy Peng Xiang, Congting Ye, Chengguo Yao","doi":"10.1016/j.celrep.2025.115376","DOIUrl":null,"url":null,"abstract":"<p><p>The catalytic role of U6 snRNP in pre-mRNA splicing has been well established. In this study, we utilize an antisense morpholino oligonucleotide (AMO) specifically targeting catalytic sites of U6 snRNA to achieve functional knockdown of U6 snRNP in HeLa cells. The data show a significant increase in global intronic premature cleavage and polyadenylation (PCPA) events, similar to those observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Mechanistically, we provide evidence that U6 AMO-mediated splicing inhibition might be the driving force for PCPA as application of another specific AMO targeting U2 snRNP results in similar global PCPA effects. Together with our recently published findings that demonstrate the global inhibitory effect of U4 snRNP on intronic PCPA, our data highlight the critical role of splicing in suppressing intronic PCPA and support a model in which splicing and polyadenylation may compete with each other within introns during co-transcriptional mRNA processing.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115376"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115376","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic role of U6 snRNP in pre-mRNA splicing has been well established. In this study, we utilize an antisense morpholino oligonucleotide (AMO) specifically targeting catalytic sites of U6 snRNA to achieve functional knockdown of U6 snRNP in HeLa cells. The data show a significant increase in global intronic premature cleavage and polyadenylation (PCPA) events, similar to those observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Mechanistically, we provide evidence that U6 AMO-mediated splicing inhibition might be the driving force for PCPA as application of another specific AMO targeting U2 snRNP results in similar global PCPA effects. Together with our recently published findings that demonstrate the global inhibitory effect of U4 snRNP on intronic PCPA, our data highlight the critical role of splicing in suppressing intronic PCPA and support a model in which splicing and polyadenylation may compete with each other within introns during co-transcriptional mRNA processing.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.