Integration and execution of Community Land Model Urban (CLMU) in a containerized environment

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-02-27 DOI:10.1016/j.envsoft.2025.106391
Junjie Yu , Yuan Sun , Sarah Lindley , Caroline Jay , David O. Topping , Keith W. Oleson , Zhonghua Zheng
{"title":"Integration and execution of Community Land Model Urban (CLMU) in a containerized environment","authors":"Junjie Yu ,&nbsp;Yuan Sun ,&nbsp;Sarah Lindley ,&nbsp;Caroline Jay ,&nbsp;David O. Topping ,&nbsp;Keith W. Oleson ,&nbsp;Zhonghua Zheng","doi":"10.1016/j.envsoft.2025.106391","DOIUrl":null,"url":null,"abstract":"<div><div>The Community Land Model Urban (CLMU) is a process-based numerical urban climate model that simulates the interactions between the atmosphere and urban surfaces, serving as a powerful tool for the convergence of urban and climate science research. However, CLMU presents significant challenges due to the complexities of model installation, environment and case configuration, and generating model inputs. To address these challenges, a toolkit was developed, including (1) an operating system-independent containerized application developed to streamline the execution of CLMU and (2) a Python-based tool used to interface with the containerized CLMU and create urban surface and atmospheric forcing data. This toolkit enables users to simulate urban climate and explore climate-related variables such as urban building energy consumption and human thermal stress. It also supports the simulation under future climate conditions and the exploration of urban climate responses to various surface properties, providing a foundation for evaluating urban climate adaptation strategies.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106391"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000751","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Community Land Model Urban (CLMU) is a process-based numerical urban climate model that simulates the interactions between the atmosphere and urban surfaces, serving as a powerful tool for the convergence of urban and climate science research. However, CLMU presents significant challenges due to the complexities of model installation, environment and case configuration, and generating model inputs. To address these challenges, a toolkit was developed, including (1) an operating system-independent containerized application developed to streamline the execution of CLMU and (2) a Python-based tool used to interface with the containerized CLMU and create urban surface and atmospheric forcing data. This toolkit enables users to simulate urban climate and explore climate-related variables such as urban building energy consumption and human thermal stress. It also supports the simulation under future climate conditions and the exploration of urban climate responses to various surface properties, providing a foundation for evaluating urban climate adaptation strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Integration and execution of Community Land Model Urban (CLMU) in a containerized environment SeqIA: A Python framework for extracting drought impacts from news archives porousRTFoam v1.0: An open-source numerical platform for simulating pore-scale reactive transport processes in porous media Climate change effects at basin-scale: Weathering rates and CO2 consumption assessment by using the reaction path modelling Scientometric analysis of development and opportunities for research in digital agriculture innovation management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1