{"title":"Single-cell transcriptomic reveals network topology changes of cancer at the individual level","authors":"Chenhui Song","doi":"10.1016/j.compbiolchem.2025.108401","DOIUrl":null,"url":null,"abstract":"<div><div>Network biology facilitates a better understanding of complex diseases. Single-sample networks retain individual information and have the potential to distinguish disease status. Previous studies mainly used bulk RNA sequencing data to construct single-sample networks, but different cell types in the tissue microenvironment perform significantly different functions. In this study, we investigated whether network topology features of cell-type-specific networks varied in different pathological states at the individual level. Protein-protein interaction network (PPI) and co-expression network of cancer and ulcerative colitis were established using four publicly single-cell RNA sequencing (scRNA-seq) datasets. We analyzed cell-cell interactions of epithelial cells and immune cells using CellChat R package. Network topology changes between normal tissues and pathological tissues were analyzed using Cytoscape software and QUACN R package. Results showed cell-cell interactions of epithelial cells were enhanced in carcinoma and adenoma. The average number of neighbors and graphindex of co-expression network increased in epithelial cells of adenoma, carcinoma and paracancer compared with normal tissues. The co-expression network density of T cells in tumors was significantly higher than that in normal tissues. The co-expression network complexity of epithelial cells in the benign tissues was associated with the grade group of paired tumors. This study suggests topological properties of cell-type-specific individual network vary in different pathological states, providing an insight into understanding complex diseases.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"117 ","pages":"Article 108401"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000611","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Network biology facilitates a better understanding of complex diseases. Single-sample networks retain individual information and have the potential to distinguish disease status. Previous studies mainly used bulk RNA sequencing data to construct single-sample networks, but different cell types in the tissue microenvironment perform significantly different functions. In this study, we investigated whether network topology features of cell-type-specific networks varied in different pathological states at the individual level. Protein-protein interaction network (PPI) and co-expression network of cancer and ulcerative colitis were established using four publicly single-cell RNA sequencing (scRNA-seq) datasets. We analyzed cell-cell interactions of epithelial cells and immune cells using CellChat R package. Network topology changes between normal tissues and pathological tissues were analyzed using Cytoscape software and QUACN R package. Results showed cell-cell interactions of epithelial cells were enhanced in carcinoma and adenoma. The average number of neighbors and graphindex of co-expression network increased in epithelial cells of adenoma, carcinoma and paracancer compared with normal tissues. The co-expression network density of T cells in tumors was significantly higher than that in normal tissues. The co-expression network complexity of epithelial cells in the benign tissues was associated with the grade group of paired tumors. This study suggests topological properties of cell-type-specific individual network vary in different pathological states, providing an insight into understanding complex diseases.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.