Jiannan Mao , Yichang Xu , Wenbo Wang , Xiongwei Deng , Yujian Hui , Min Rui , Jincheng Tang , Wei Wang , Yiyang Huang , Liang Wu , Kun Xi , Yunrong Zhu , Yong Gu , Liang Chen
{"title":"Topological cues of microparticles train stem cells for tissue repair via mechanotransduction","authors":"Jiannan Mao , Yichang Xu , Wenbo Wang , Xiongwei Deng , Yujian Hui , Min Rui , Jincheng Tang , Wei Wang , Yiyang Huang , Liang Wu , Kun Xi , Yunrong Zhu , Yong Gu , Liang Chen","doi":"10.1016/j.bioactmat.2025.02.032","DOIUrl":null,"url":null,"abstract":"<div><div>Microspheres (MPs) and porous microspheres (PMPs) are the two most widely used microparticles in tissue engineering and stem cell therapy. However, how stem cells perceive the topological differences between them to regulate cell function remains to be unclear. Here, we systematically studied the changes in stem cell function under the action of MPs and PMPs and elucidated the related mechanisms. Our findings show that the porous structure of PMPs can be sensed by focal adhesions (FAs), which triggers the synthesis of F-actin to inhibit the phosphorylation and degradation of Yes-associated protein (YAP), while also transmitting stress to the nucleus through the contraction of F-actin, thereby enhancing the nuclear translocation of YAP protein. The activation of YAP significantly enhances the proliferation, osteogenesis, paracrine and glucose metabolism of BMSCs, making them exhibit stronger bone repair ability in both in vivo and in vitro experiments. In summary, this study provides a comprehensive and reliable understanding of the behavior of BMSCs in response to MPs and PMPs. It also deepens our understanding of the association between microparticles’ topological cues and biological functions, which will provide valuable guidance for the construction of bone tissue engineering (BTE) scaffolds.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 531-549"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X2500088X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microspheres (MPs) and porous microspheres (PMPs) are the two most widely used microparticles in tissue engineering and stem cell therapy. However, how stem cells perceive the topological differences between them to regulate cell function remains to be unclear. Here, we systematically studied the changes in stem cell function under the action of MPs and PMPs and elucidated the related mechanisms. Our findings show that the porous structure of PMPs can be sensed by focal adhesions (FAs), which triggers the synthesis of F-actin to inhibit the phosphorylation and degradation of Yes-associated protein (YAP), while also transmitting stress to the nucleus through the contraction of F-actin, thereby enhancing the nuclear translocation of YAP protein. The activation of YAP significantly enhances the proliferation, osteogenesis, paracrine and glucose metabolism of BMSCs, making them exhibit stronger bone repair ability in both in vivo and in vitro experiments. In summary, this study provides a comprehensive and reliable understanding of the behavior of BMSCs in response to MPs and PMPs. It also deepens our understanding of the association between microparticles’ topological cues and biological functions, which will provide valuable guidance for the construction of bone tissue engineering (BTE) scaffolds.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.