Topological cues of microparticles train stem cells for tissue repair via mechanotransduction

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL Bioactive Materials Pub Date : 2025-03-03 DOI:10.1016/j.bioactmat.2025.02.032
Jiannan Mao , Yichang Xu , Wenbo Wang , Xiongwei Deng , Yujian Hui , Min Rui , Jincheng Tang , Wei Wang , Yiyang Huang , Liang Wu , Kun Xi , Yunrong Zhu , Yong Gu , Liang Chen
{"title":"Topological cues of microparticles train stem cells for tissue repair via mechanotransduction","authors":"Jiannan Mao ,&nbsp;Yichang Xu ,&nbsp;Wenbo Wang ,&nbsp;Xiongwei Deng ,&nbsp;Yujian Hui ,&nbsp;Min Rui ,&nbsp;Jincheng Tang ,&nbsp;Wei Wang ,&nbsp;Yiyang Huang ,&nbsp;Liang Wu ,&nbsp;Kun Xi ,&nbsp;Yunrong Zhu ,&nbsp;Yong Gu ,&nbsp;Liang Chen","doi":"10.1016/j.bioactmat.2025.02.032","DOIUrl":null,"url":null,"abstract":"<div><div>Microspheres (MPs) and porous microspheres (PMPs) are the two most widely used microparticles in tissue engineering and stem cell therapy. However, how stem cells perceive the topological differences between them to regulate cell function remains to be unclear. Here, we systematically studied the changes in stem cell function under the action of MPs and PMPs and elucidated the related mechanisms. Our findings show that the porous structure of PMPs can be sensed by focal adhesions (FAs), which triggers the synthesis of F-actin to inhibit the phosphorylation and degradation of Yes-associated protein (YAP), while also transmitting stress to the nucleus through the contraction of F-actin, thereby enhancing the nuclear translocation of YAP protein. The activation of YAP significantly enhances the proliferation, osteogenesis, paracrine and glucose metabolism of BMSCs, making them exhibit stronger bone repair ability in both in vivo and in vitro experiments. In summary, this study provides a comprehensive and reliable understanding of the behavior of BMSCs in response to MPs and PMPs. It also deepens our understanding of the association between microparticles’ topological cues and biological functions, which will provide valuable guidance for the construction of bone tissue engineering (BTE) scaffolds.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 531-549"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X2500088X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microspheres (MPs) and porous microspheres (PMPs) are the two most widely used microparticles in tissue engineering and stem cell therapy. However, how stem cells perceive the topological differences between them to regulate cell function remains to be unclear. Here, we systematically studied the changes in stem cell function under the action of MPs and PMPs and elucidated the related mechanisms. Our findings show that the porous structure of PMPs can be sensed by focal adhesions (FAs), which triggers the synthesis of F-actin to inhibit the phosphorylation and degradation of Yes-associated protein (YAP), while also transmitting stress to the nucleus through the contraction of F-actin, thereby enhancing the nuclear translocation of YAP protein. The activation of YAP significantly enhances the proliferation, osteogenesis, paracrine and glucose metabolism of BMSCs, making them exhibit stronger bone repair ability in both in vivo and in vitro experiments. In summary, this study provides a comprehensive and reliable understanding of the behavior of BMSCs in response to MPs and PMPs. It also deepens our understanding of the association between microparticles’ topological cues and biological functions, which will provide valuable guidance for the construction of bone tissue engineering (BTE) scaffolds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
期刊最新文献
Enhancing PD-1 blockade in NSCLC: Reprogramming tumor immune microenvironment with albumin-bound statins targeting lipid rafts and mitochondrial respiration Zn-DHM nanozymes regulate metabolic and immune homeostasis for early diabetic wound therapy From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications Mesenchymal stromal/stem cell spheroid-derived extracellular vesicles advance the therapeutic efficacy of 3D-printed vascularized artificial liver lobules in liver failure treatment A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1