LAR-Pose: Lightweight human pose estimation with adaptive regression loss

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-02-25 DOI:10.1016/j.neucom.2025.129777
Xudong Lou , Xin Lin , Henan Zeng , Xiangxian Zhu
{"title":"LAR-Pose: Lightweight human pose estimation with adaptive regression loss","authors":"Xudong Lou ,&nbsp;Xin Lin ,&nbsp;Henan Zeng ,&nbsp;Xiangxian Zhu","doi":"10.1016/j.neucom.2025.129777","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, LAR-Pose, a lightweight, high-resolution network for human pose estimation driven by adaptive regression loss is proposed and experimentally demonstrated based on MS COCO and MPII. The architecture of the LAR-Pose comprises two main components. One is a lightweight high-resolution backbone network, which utilizes a parallel high-resolution architecture with conditional channel weighting block to reduce the model size and computational complexity. The other is a dynamic residual refinement network, which calculates residuals from pseudo-heatmaps and scaling factors, improving training concentration for consistent distribution estimation, rather than predicting coordinates or heatmaps directly. Specific coordinates are derived through integral heatmap regression, effectively minimizing quantization errors. Our adaptive regression loss, which uses a flow model to fit the distribution of residuals in real-time, provides more sensitive parameter feedback than conventional heatmap loss, ensuring differentiability and continuity during backpropagation while enhancing performance. With a relatively small parameter scale, LAR-Pose achieves an AP of 73.5 on MS COCO and a PCKh of 90.9 on MPII, while the results outperform most advanced small networks and approach the performance of large networks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129777"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225004497","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, LAR-Pose, a lightweight, high-resolution network for human pose estimation driven by adaptive regression loss is proposed and experimentally demonstrated based on MS COCO and MPII. The architecture of the LAR-Pose comprises two main components. One is a lightweight high-resolution backbone network, which utilizes a parallel high-resolution architecture with conditional channel weighting block to reduce the model size and computational complexity. The other is a dynamic residual refinement network, which calculates residuals from pseudo-heatmaps and scaling factors, improving training concentration for consistent distribution estimation, rather than predicting coordinates or heatmaps directly. Specific coordinates are derived through integral heatmap regression, effectively minimizing quantization errors. Our adaptive regression loss, which uses a flow model to fit the distribution of residuals in real-time, provides more sensitive parameter feedback than conventional heatmap loss, ensuring differentiability and continuity during backpropagation while enhancing performance. With a relatively small parameter scale, LAR-Pose achieves an AP of 73.5 on MS COCO and a PCKh of 90.9 on MPII, while the results outperform most advanced small networks and approach the performance of large networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Momentum gradient-based untargeted poisoning attack on hypergraph neural networks Memo-UNet: Leveraging historical information for enhanced wave height prediction LN-DETR: An efficient Transformer architecture for lung nodule detection with multi-scale feature fusion CMGN: Text GNN and RWKV MLP-mixer combined with cross-feature fusion for fake news detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1