A variable-gain fixed-time convergent neurodynamic network for time-variant quadratic programming under unknown noises

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-02-25 DOI:10.1016/j.neucom.2025.129778
Biao Song , Tinghe Hong , Weibing Li , Gang Chen , Yongping Pan , Kai Huang
{"title":"A variable-gain fixed-time convergent neurodynamic network for time-variant quadratic programming under unknown noises","authors":"Biao Song ,&nbsp;Tinghe Hong ,&nbsp;Weibing Li ,&nbsp;Gang Chen ,&nbsp;Yongping Pan ,&nbsp;Kai Huang","doi":"10.1016/j.neucom.2025.129778","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes a variable-gain fixed-time convergent and noise-tolerant error-dynamics based neurodynamic network (VGFxTNT-EDNN) to solve time-varying quadratic programming problems, while being robust to unknown noises. Unlike existing finite-time convergent EDNNs, the newly designed VGFxTNT-EDNN guarantees fixed-time convergence by dynamically adjusting its variable parameters. Moreover, the VGFxTNT-EDNN effectively handles unknown noise, addressing a limitation of existing fixed-time or predefined-time convergent models, which typically assume that the noise is known. Theoretical analysis utilizing Lyapunov theory proves that the VGFxTNT-EDNN possesses fixed-time convergence and robustness properties. Numerical validations demonstrate superior noise tolerance and fixed-time convergence of the VGFxTNT-EDNN, as compared with the existing models. Finally, a path-tracking experiment is conducted by utilizing a Franka Emika Panda robot to verify the practicality of the VGFxTNT-EDNN.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129778"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225004503","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a variable-gain fixed-time convergent and noise-tolerant error-dynamics based neurodynamic network (VGFxTNT-EDNN) to solve time-varying quadratic programming problems, while being robust to unknown noises. Unlike existing finite-time convergent EDNNs, the newly designed VGFxTNT-EDNN guarantees fixed-time convergence by dynamically adjusting its variable parameters. Moreover, the VGFxTNT-EDNN effectively handles unknown noise, addressing a limitation of existing fixed-time or predefined-time convergent models, which typically assume that the noise is known. Theoretical analysis utilizing Lyapunov theory proves that the VGFxTNT-EDNN possesses fixed-time convergence and robustness properties. Numerical validations demonstrate superior noise tolerance and fixed-time convergence of the VGFxTNT-EDNN, as compared with the existing models. Finally, a path-tracking experiment is conducted by utilizing a Franka Emika Panda robot to verify the practicality of the VGFxTNT-EDNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Momentum gradient-based untargeted poisoning attack on hypergraph neural networks Memo-UNet: Leveraging historical information for enhanced wave height prediction LN-DETR: An efficient Transformer architecture for lung nodule detection with multi-scale feature fusion CMGN: Text GNN and RWKV MLP-mixer combined with cross-feature fusion for fake news detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1