Research on the application of loop quantum theory model in black hole quantum information

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2025-03-03 DOI:10.1007/s11128-025-04660-6
Yangting Liu
{"title":"Research on the application of loop quantum theory model in black hole quantum information","authors":"Yangting Liu","doi":"10.1007/s11128-025-04660-6","DOIUrl":null,"url":null,"abstract":"<div><p>An important reason why it is currently difficult to unify relativity theory and quantum theory is the quantum information paradox. The information engulfment pointed out by general relativity violates the principles of quantum mechanics. An important reason why the industry does not have a clear understanding of this phenomenon is the current lack of a theoretically solvable cosmological model. Based on the complete model of loop quantum theory, this article solves different levels of Hamiltonian constraint models and simulates black hole information transfer dynamics, especially at extreme points, from analytical results to step-by-step quantum corrections, and attempts to compare the performance of different physical models in simulating quantum advantages during information transmission. Our study shows that even second-order expansions are sufficient to distinguish differences in dynamics at the black hole extremes, but to truly identify a model that has the potential to describe quantum information transfer mechanisms and is significantly different from other models, the theoretical analytical solution should at least extend to level three and above. In addition, the research results such as computational simulation methods and related conclusions cited and improved in this article can provide certain theoretical support and new insights for the research prospects of general relativity loop quantum cosmology and the intersection of quantum information and quantum fields.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04660-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An important reason why it is currently difficult to unify relativity theory and quantum theory is the quantum information paradox. The information engulfment pointed out by general relativity violates the principles of quantum mechanics. An important reason why the industry does not have a clear understanding of this phenomenon is the current lack of a theoretically solvable cosmological model. Based on the complete model of loop quantum theory, this article solves different levels of Hamiltonian constraint models and simulates black hole information transfer dynamics, especially at extreme points, from analytical results to step-by-step quantum corrections, and attempts to compare the performance of different physical models in simulating quantum advantages during information transmission. Our study shows that even second-order expansions are sufficient to distinguish differences in dynamics at the black hole extremes, but to truly identify a model that has the potential to describe quantum information transfer mechanisms and is significantly different from other models, the theoretical analytical solution should at least extend to level three and above. In addition, the research results such as computational simulation methods and related conclusions cited and improved in this article can provide certain theoretical support and new insights for the research prospects of general relativity loop quantum cosmology and the intersection of quantum information and quantum fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
Research on the application of loop quantum theory model in black hole quantum information ANN-enhanced detection of multipartite entanglement in a three-qubit NMR quantum processor Quantum coherence and weak values based on rank-1 POVMs Applications of disentropy in the analysis of randomness generated by quantum random number generators Average and maximal coherence based on the modified generalized Wigner–Yanase–Dyson skew information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1