Zihan Liu, Ruidong Tao, Hao Li, Mengjie Qu, Chun Hu, Yunjun Mei
{"title":"Impact of the Aged Polyvinyl Chloride Microplastics on the Adsorption Behavior of Tildipirosin and Environmental Risk Assessment","authors":"Zihan Liu, Ruidong Tao, Hao Li, Mengjie Qu, Chun Hu, Yunjun Mei","doi":"10.1007/s11270-025-07827-0","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) carry and spread environmental pollutants far and wide. The surface structure of MPs changes when MPs are exposed to light, and which influences the adhesion of MPs to pollutants. In this study, ultraviolet (UV) irradiation (1000 W mercury lamp, 80W/cm<sup>2</sup>) was utilized to simulate the aging of PVC MPs in natural environments. The adsorption and desorption behaviors of PVC MPs on tildipirosin were investigated. Furthermore, <i>Escherichia coli</i> was used for antibiotic stress experiments. The results revealed that aged PVC MPs exhibited a new oxygen-containing absorption peak at 1736 cm<sup>−1</sup>, attributing to the stretching of a C = O. Notably, tildipirosin adsorption by the pristine PVC MPs conformed to the pseudo-first-order kinetic model (R<sup>2</sup> = 0.975), while the aged PVC MPs followed the pseudo-second-order kinetic model. The adsorption process followed the Langmuir thermodynamic equation. Furthermore, the desorption rates of the pristine, 6-day-aged, and 12-day-aged PVC MPs were determined to be 24.2%, 24.3%, and 30.7%, respectively. Thus, the data indicated that tildipirosin was more easily desorbed from the aged PVC MPs. pH studies showed that electrostatic forces significantly impacted tildipirosin adsorption. The antibiotics stress experiments demonstrated that <i>Escherichia coli</i> K12 could tolerate a higher concentration (40 mg/L) of tildipirosin undergoing the domestication with low concentration (12.8 mg/L tildipirosin) sequential stress. The findings of this study are expected to contribute to the understanding of the synergistic behavior of MPs and antibiotics in the environment and the ecological risks involved.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07827-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) carry and spread environmental pollutants far and wide. The surface structure of MPs changes when MPs are exposed to light, and which influences the adhesion of MPs to pollutants. In this study, ultraviolet (UV) irradiation (1000 W mercury lamp, 80W/cm2) was utilized to simulate the aging of PVC MPs in natural environments. The adsorption and desorption behaviors of PVC MPs on tildipirosin were investigated. Furthermore, Escherichia coli was used for antibiotic stress experiments. The results revealed that aged PVC MPs exhibited a new oxygen-containing absorption peak at 1736 cm−1, attributing to the stretching of a C = O. Notably, tildipirosin adsorption by the pristine PVC MPs conformed to the pseudo-first-order kinetic model (R2 = 0.975), while the aged PVC MPs followed the pseudo-second-order kinetic model. The adsorption process followed the Langmuir thermodynamic equation. Furthermore, the desorption rates of the pristine, 6-day-aged, and 12-day-aged PVC MPs were determined to be 24.2%, 24.3%, and 30.7%, respectively. Thus, the data indicated that tildipirosin was more easily desorbed from the aged PVC MPs. pH studies showed that electrostatic forces significantly impacted tildipirosin adsorption. The antibiotics stress experiments demonstrated that Escherichia coli K12 could tolerate a higher concentration (40 mg/L) of tildipirosin undergoing the domestication with low concentration (12.8 mg/L tildipirosin) sequential stress. The findings of this study are expected to contribute to the understanding of the synergistic behavior of MPs and antibiotics in the environment and the ecological risks involved.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.