Change point detection in high dimensional covariance matrix using Pillai’s statistics

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2024-11-09 DOI:10.1007/s10182-024-00516-z
Seonghun Cho, Minsup Shin, Young Hyun Cho, Johan Lim
{"title":"Change point detection in high dimensional covariance matrix using Pillai’s statistics","authors":"Seonghun Cho,&nbsp;Minsup Shin,&nbsp;Young Hyun Cho,&nbsp;Johan Lim","doi":"10.1007/s10182-024-00516-z","DOIUrl":null,"url":null,"abstract":"<div><p>This research proposes a method to test and estimate change points in the covariance structure of high-dimensional multivariate series data. Our method uses the trace of the beta matrix, known as Pillai’s statistics, to test the change in covariance matrix at each time point. We study the asymptotic normality of Pillai’s statistics for testing the equality of two covariance matrices when both sample size and dimension increase at the same rate. We test the existence of a single change point in a given time period using Cauchy combination test, the test using an weighted sum of Cauchy transformed <i>p</i>-values, and estimate the change point as the point whose statistic is the greatest. To test and estimate multiple change points, we use the idea of the wild binary segmentation and repeatedly apply the procedure for a single change point to each segmented period until no significant change point exists. We numerically provide the size and power of our method. We finally apply our procedure to finding abnormal behavior in the investment of a private equity fund.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"109 1","pages":"53 - 84"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-024-00516-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-024-00516-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a method to test and estimate change points in the covariance structure of high-dimensional multivariate series data. Our method uses the trace of the beta matrix, known as Pillai’s statistics, to test the change in covariance matrix at each time point. We study the asymptotic normality of Pillai’s statistics for testing the equality of two covariance matrices when both sample size and dimension increase at the same rate. We test the existence of a single change point in a given time period using Cauchy combination test, the test using an weighted sum of Cauchy transformed p-values, and estimate the change point as the point whose statistic is the greatest. To test and estimate multiple change points, we use the idea of the wild binary segmentation and repeatedly apply the procedure for a single change point to each segmented period until no significant change point exists. We numerically provide the size and power of our method. We finally apply our procedure to finding abnormal behavior in the investment of a private equity fund.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Pillai统计量的高维协方差矩阵变点检测
本研究提出了一种测试和估计高维多变量序列数据协方差结构变化点的方法。我们的方法使用贝塔矩阵的迹,即 Pillai 统计量,来检验每个时间点协方差矩阵的变化。我们研究了 Pillai 统计量的渐近正态性,以检验样本量和维度以相同速度增加时两个协方差矩阵的相等性。我们使用考奇组合检验(该检验使用考奇转换 p 值的加权和)来检验给定时间段内是否存在单个变化点,并将统计量最大的点作为变化点。为了检验和估计多个变化点,我们采用了二元狂分段的思想,对每个分段时期重复应用单个变化点的程序,直到不存在显著变化点为止。我们用数字说明了我们方法的规模和威力。最后,我们将我们的程序应用于发现私募股权基金投资中的异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Editorial Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup. Basketball players performance measurement with algorithmic survival data analysis Testing for causal effect for binary data when propensity scores are estimated through Bayesian Networks Forecasting time series by long-memory models for count data with an application to price jumps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1