Impacts of Predicted Liquid Fraction and Multiple Ice-Phase Categories on the Simulation of Hail in the Predicted Particle Properties (P3) Microphysics Scheme
Jason A. Milbrandt, Hugh Morrison, Mélissa Cholette
{"title":"Impacts of Predicted Liquid Fraction and Multiple Ice-Phase Categories on the Simulation of Hail in the Predicted Particle Properties (P3) Microphysics Scheme","authors":"Jason A. Milbrandt, Hugh Morrison, Mélissa Cholette","doi":"10.1029/2024MS004404","DOIUrl":null,"url":null,"abstract":"<p>Since its inception in 2015, the Predicted Particle Properties (P3) bulk microphysics scheme has undergone several major developments. Ice is now represented by a user-specified number of freely-evolving (non-prescribed) categories; the liquid fraction of particles is predicted, thereby allowing for mixed-phase particles and improved process rates; and the scheme is triple-moment, which allows the size spectral width to vary independently. As such, P3 is now capable of representing key properties and microphysical processes that are important for hail. In this study, the impacts of some new capabilities of P3 on the simulation of hail amounts and sizes are examined in the context of idealized, high-resolution (200-m isotropic grid spacing) hailstorm simulations using a cloud-resolving model. Sensitivity tests are conducted to examine the impacts of (a) the predicted liquid fraction, and (b) the number of generic ice-phase categories (varied between one and four). Predicted liquid fraction leads to a more realistic treatment of melting and shedding, which decreases the mean ice (hail) sizes during melting compared to the original P3 scheme. In contrast, with an increasing number of ice-phase categories, the problem of property dilution is mitigated, ultimately resulting in greater quantities of hail and larger sizes reaching the surface. It is argued that the latest version of the P3 scheme is now capable of realistically representing the major microphysical processes involved in the initiation, growth, and decay of hail.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004404","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004404","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Since its inception in 2015, the Predicted Particle Properties (P3) bulk microphysics scheme has undergone several major developments. Ice is now represented by a user-specified number of freely-evolving (non-prescribed) categories; the liquid fraction of particles is predicted, thereby allowing for mixed-phase particles and improved process rates; and the scheme is triple-moment, which allows the size spectral width to vary independently. As such, P3 is now capable of representing key properties and microphysical processes that are important for hail. In this study, the impacts of some new capabilities of P3 on the simulation of hail amounts and sizes are examined in the context of idealized, high-resolution (200-m isotropic grid spacing) hailstorm simulations using a cloud-resolving model. Sensitivity tests are conducted to examine the impacts of (a) the predicted liquid fraction, and (b) the number of generic ice-phase categories (varied between one and four). Predicted liquid fraction leads to a more realistic treatment of melting and shedding, which decreases the mean ice (hail) sizes during melting compared to the original P3 scheme. In contrast, with an increasing number of ice-phase categories, the problem of property dilution is mitigated, ultimately resulting in greater quantities of hail and larger sizes reaching the surface. It is argued that the latest version of the P3 scheme is now capable of realistically representing the major microphysical processes involved in the initiation, growth, and decay of hail.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.