{"title":"Linear Antimicrobial Peptide, Containing a Diindolyl Methane Unnatural Amino Acid, Potentiates Gentamicin Against Methicillin-Resistant Staphylococcus aureus","authors":"Shalini Singh, Grace Kaul, Manjulika Shukla, Abdul Akhir, Shubhandra Tripathi, Abhinav Gupta, Rakhi Bormon, Nisanth N. Nair, Sidharth Chopra, Sandeep Verma","doi":"10.1002/ddr.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The headway for the management of emerging resistant microbial strains has become a demanding task. Over the years, antimicrobial peptides (AMP), have been recognized and explored for their highly systematized SAR and antibacterial properties. With this background, we have reported a new class of AMPs. These peptides incorporate an unnatural amino acid, with a motivation from cruciferous bioactive phytochemical bisindoles methane derivatives with highly selective antimicrobial action. These peptides may also be considered as linear derivatives of hirsutide isolated from entomopathogenic fungus. The synthesized peptides were tested for their antimicrobial activity against an ESKAPE pathogen panel, where peptide <b>3</b> exhibited equipotent MIC and potent synergistic action along with gentamicin against <i>Staphylococcus aureus</i> and <i>Enterococcus</i> clinical isolates. This combination was also able to repotentiate gentamicin against NRS119, a gentamicin-resistant MRSA. Molecular dynamics study and free energy calculations provided insights to membrane disruptive properties of AMP action, which assisted gentamicin pass through the lipid–water interface.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The headway for the management of emerging resistant microbial strains has become a demanding task. Over the years, antimicrobial peptides (AMP), have been recognized and explored for their highly systematized SAR and antibacterial properties. With this background, we have reported a new class of AMPs. These peptides incorporate an unnatural amino acid, with a motivation from cruciferous bioactive phytochemical bisindoles methane derivatives with highly selective antimicrobial action. These peptides may also be considered as linear derivatives of hirsutide isolated from entomopathogenic fungus. The synthesized peptides were tested for their antimicrobial activity against an ESKAPE pathogen panel, where peptide 3 exhibited equipotent MIC and potent synergistic action along with gentamicin against Staphylococcus aureus and Enterococcus clinical isolates. This combination was also able to repotentiate gentamicin against NRS119, a gentamicin-resistant MRSA. Molecular dynamics study and free energy calculations provided insights to membrane disruptive properties of AMP action, which assisted gentamicin pass through the lipid–water interface.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.