Delaney M. Benoit, Marie-Pierre C. Delisle, Greg Siemens, Britt Raubenheimer, Steve Elgar, Ryan P. Mulligan
{"title":"Groundwater Hydrodynamic Oscillations From Swash With Transparent Sand (GHOSTS)","authors":"Delaney M. Benoit, Marie-Pierre C. Delisle, Greg Siemens, Britt Raubenheimer, Steve Elgar, Ryan P. Mulligan","doi":"10.1029/2024JC021293","DOIUrl":null,"url":null,"abstract":"<p>Interactions between surface flows and groundwater in beaches can influence erosion and accretion, wave overtopping, groundwater levels and salinization, and transport of nutrients and pollutants. Laboratory experiments using transparent crushed quartz and optically matched mineral oil as proxies for sand and water allow the degree of saturation to be computed at pore-scale (0.7 mm resolution) enabling detailed investigations of the wave runup driven infiltration into a beach in a wave flume for a range of slopes and flow boundary conditions. The evolution of the wetting front resulting from wave runup on an initially unsaturated beach is described in detail, including the formation of an infiltration wedge in the subsurface of the swash zone and the wave-driven rise in fluid elevation inside the beach. The elevation of the runup for each event is found to be related closely to the saturation of the beach face, reaching an equilibrium state once the subsurface in the swash zone reaches capacity. The back wall boundary condition in the flume has a significant role in how subsurface flows increase saturation within the beach, especially with boundary head elevations greater than the initial phreatic surface. The results of these novel experimental observations are used to develop dimensionless relationships between the surface wave runup and the subsurface saturation rates. To improve monitoring and interpretation of future coastal groundwater studies, three distinct cross-shore regimes are defined for assessing change in subsurface fluid elevation in the beach.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021293","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021293","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Interactions between surface flows and groundwater in beaches can influence erosion and accretion, wave overtopping, groundwater levels and salinization, and transport of nutrients and pollutants. Laboratory experiments using transparent crushed quartz and optically matched mineral oil as proxies for sand and water allow the degree of saturation to be computed at pore-scale (0.7 mm resolution) enabling detailed investigations of the wave runup driven infiltration into a beach in a wave flume for a range of slopes and flow boundary conditions. The evolution of the wetting front resulting from wave runup on an initially unsaturated beach is described in detail, including the formation of an infiltration wedge in the subsurface of the swash zone and the wave-driven rise in fluid elevation inside the beach. The elevation of the runup for each event is found to be related closely to the saturation of the beach face, reaching an equilibrium state once the subsurface in the swash zone reaches capacity. The back wall boundary condition in the flume has a significant role in how subsurface flows increase saturation within the beach, especially with boundary head elevations greater than the initial phreatic surface. The results of these novel experimental observations are used to develop dimensionless relationships between the surface wave runup and the subsurface saturation rates. To improve monitoring and interpretation of future coastal groundwater studies, three distinct cross-shore regimes are defined for assessing change in subsurface fluid elevation in the beach.