Applying Molecular Dynamics Simulations to Unveil the Anisotropic Growth Mechanism of Gold Nanorods: Advances and Perspectives.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-02-28 DOI:10.1021/acs.jcim.4c02009
José Adriano da Silva, Paulo Augusto Netz, Mario Roberto Meneghetti
{"title":"Applying Molecular Dynamics Simulations to Unveil the Anisotropic Growth Mechanism of Gold Nanorods: Advances and Perspectives.","authors":"José Adriano da Silva, Paulo Augusto Netz, Mario Roberto Meneghetti","doi":"10.1021/acs.jcim.4c02009","DOIUrl":null,"url":null,"abstract":"<p><p>The unique properties of gold nanorods (AuNRs), combined with their relatively straightforward production, good yields, and satisfactory control over size and shape, have sparked considerable interest in their potential applications. However, the mechanism behind these particles' formation continues to be a subject of significant interest and debate. Many experimental studies have been designed and undertaken to understand how AuNRs can be produced through seed-mediated methods. In recent years, quantum mechanics and molecular dynamics simulations have added to the repertoire of tools for investigating this topic. By comparing simulations with experimental data, essential aspects of the anisotropic growth of AuNRs can be revealed. This review presents an overview of the mechanisms proposed for creating AuNRs through seed-mediated methods, grounded in both experimental and simulation studies, and also highlights some remaining gaps in our understanding of the anisotropic growth process that need further exploration.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02009","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The unique properties of gold nanorods (AuNRs), combined with their relatively straightforward production, good yields, and satisfactory control over size and shape, have sparked considerable interest in their potential applications. However, the mechanism behind these particles' formation continues to be a subject of significant interest and debate. Many experimental studies have been designed and undertaken to understand how AuNRs can be produced through seed-mediated methods. In recent years, quantum mechanics and molecular dynamics simulations have added to the repertoire of tools for investigating this topic. By comparing simulations with experimental data, essential aspects of the anisotropic growth of AuNRs can be revealed. This review presents an overview of the mechanisms proposed for creating AuNRs through seed-mediated methods, grounded in both experimental and simulation studies, and also highlights some remaining gaps in our understanding of the anisotropic growth process that need further exploration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金纳米棒(AuNRs)具有独特的性能,而且生产相对简单、产量高、尺寸和形状控制令人满意,因此引发了人们对其潜在应用的浓厚兴趣。然而,这些颗粒背后的形成机制仍然是一个备受关注和争论的话题。为了了解如何通过种子介导法生产 AuNRs,人们设计并开展了许多实验研究。近年来,量子力学和分子动力学模拟为研究这一课题提供了更多工具。通过将模拟与实验数据进行比较,可以揭示 AuNRs 各向异性生长的基本方面。本综述以实验和模拟研究为基础,概述了通过种子介导方法生成 AuNRs 的机制,并强调了我们对各向异性生长过程的理解中仍存在的一些差距,这些差距需要进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Identification of Small-Molecule Inhibitors for Enterovirus A71 IRES by Structure-Based Virtual Screening. SynTemp: Efficient Extraction of Graph-Based Reaction Rules from Large-Scale Reaction Databases. Accelerated Hydration Site Localization and Thermodynamic Profiling. Applying Molecular Dynamics Simulations to Unveil the Anisotropic Growth Mechanism of Gold Nanorods: Advances and Perspectives. GLMCyp: A Deep Learning-Based Method for CYP450-Mediated Reaction Site Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1