A discrete-time split-state framework for multi-state modeling with application to describing the course of heart disease.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-02-28 DOI:10.1186/s12874-025-02512-6
Ming Ding, Haiyi Chen, Feng-Chang Lin
{"title":"A discrete-time split-state framework for multi-state modeling with application to describing the course of heart disease.","authors":"Ming Ding, Haiyi Chen, Feng-Chang Lin","doi":"10.1186/s12874-025-02512-6","DOIUrl":null,"url":null,"abstract":"<p><p>In chronic disease epidemiology, the investigation of disease etiology has largely focused on an endpoint, while the course of chronic disease is understudied, representing a knowledge gap. Multi-state models can be used to describe the course of chronic disease, such as Markov models which assume that the future state depends only on the present state, and semi-Markov models which allow transition rates to depend on the duration in the current state. However, these models are unsuitable for chronic diseases that are largely non-memoryless. We propose a Discrete-Time Split-State Framework that generates a process of substates by conditioning on past disease history and estimates discrete-time transition rates between substates as a function of duration in a (sub)state. Specifically, as the substates are created by conditioning on past history, they satisfy the Markov assumption, regardless of whether the original disease process is Markovian; and the transition rates are approximated by competing risks in a short time interval estimated from cause-specific Cox models. In the simulation study, we simulated a Markov process with an exponential distribution, a semi-Markov process with a Weibull distribution, and a non-Markov process with an exponential distribution. The coverage rate of transition rates estimated using our framework was 94% for the Markov process and 93% for the non-Markov process. However, the estimated transition rates were under coverage (72%) for the semi-Markov process, which is likely due to the approximation of transition rates in discrete time. In the application, we applied the framework to describe the course of heart disease in a large cohort study. In summary, the framework we proposed can be applied to both Markov and non-Markov processes and has potential to be applied to semi-Markov processes. For future research, as substates created using our framework track past disease history, the transition rates between substates have the potential to be used to derive summary estimates that characterize the disease course.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"54"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02512-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In chronic disease epidemiology, the investigation of disease etiology has largely focused on an endpoint, while the course of chronic disease is understudied, representing a knowledge gap. Multi-state models can be used to describe the course of chronic disease, such as Markov models which assume that the future state depends only on the present state, and semi-Markov models which allow transition rates to depend on the duration in the current state. However, these models are unsuitable for chronic diseases that are largely non-memoryless. We propose a Discrete-Time Split-State Framework that generates a process of substates by conditioning on past disease history and estimates discrete-time transition rates between substates as a function of duration in a (sub)state. Specifically, as the substates are created by conditioning on past history, they satisfy the Markov assumption, regardless of whether the original disease process is Markovian; and the transition rates are approximated by competing risks in a short time interval estimated from cause-specific Cox models. In the simulation study, we simulated a Markov process with an exponential distribution, a semi-Markov process with a Weibull distribution, and a non-Markov process with an exponential distribution. The coverage rate of transition rates estimated using our framework was 94% for the Markov process and 93% for the non-Markov process. However, the estimated transition rates were under coverage (72%) for the semi-Markov process, which is likely due to the approximation of transition rates in discrete time. In the application, we applied the framework to describe the course of heart disease in a large cohort study. In summary, the framework we proposed can be applied to both Markov and non-Markov processes and has potential to be applied to semi-Markov processes. For future research, as substates created using our framework track past disease history, the transition rates between substates have the potential to be used to derive summary estimates that characterize the disease course.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
Co-creation methods for public health research - characteristics, benefits, and challenges: a Health CASCADE scoping review. Poor reporting quality and high proportion of missing data in economic evaluations alongside pragmatic trials: a cross-sectional survey. Validity of using a semi-automated screening tool in a systematic review assessing non-specific effects of respiratory vaccines. Addressing challenges with Matching-Adjusted Indirect Comparisons to demonstrate the comparative effectiveness of entrectinib in metastatic ROS-1 positive Non-Small Cell Lung Cancer. Handling missing values in patient-reported outcome data in the presence of intercurrent events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1