Metabolomics Unveils the Role of Pipecolic Acid in Regulating Monocytes/Macrophages-Endothelial Cells Crosstalk to Modulate Choroidal Neovascularization.
{"title":"Metabolomics Unveils the Role of Pipecolic Acid in Regulating Monocytes/Macrophages-Endothelial Cells Crosstalk to Modulate Choroidal Neovascularization.","authors":"Chang Liu, Fangcheng Xu, Ruoyan Wei, Yun Cheng, Yunzhe Wang, Yefei Shi, Ke Yang, Wenhui Peng, Weixia Jian, Haixiang Wu, Meiyan Li","doi":"10.1016/j.exer.2025.110315","DOIUrl":null,"url":null,"abstract":"<p><p>Choroidal neovascularization (CNV) is a leading cause of vision loss in ocular diseases, including age-related macular degeneration (AMD). Despite extensive research, the underlying mechanisms of CNV remain incompletely understood, with a predominant focus on endothelial dysfunction. CNV, however, is a multi-cellular, multi-stage process involving complex interactions between endothelial cells, monocytes/macrophages, and other immune cells. In this study, we employed a dual-platform metabolomics approach combining liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) to identify key metabolic alterations associated with CNV. Our results revealed significant changes in metabolic pathways during CNV progression. Using a myeloid lineage tracing mouse model, we further explored how Pipecolic acid regulates interactions between monocytes/macrophages and endothelial cells, key players in CNV development. We found that Pipecolic acid modulates monocyte/macrophage-endothelial cell crosstalk, inhibiting pathological angiogenesis. These results provide valuable insights into the molecular mechanisms driving CNV and highlight potential therapeutic targets for treating ocular neovascular diseases.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110315"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110315","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Choroidal neovascularization (CNV) is a leading cause of vision loss in ocular diseases, including age-related macular degeneration (AMD). Despite extensive research, the underlying mechanisms of CNV remain incompletely understood, with a predominant focus on endothelial dysfunction. CNV, however, is a multi-cellular, multi-stage process involving complex interactions between endothelial cells, monocytes/macrophages, and other immune cells. In this study, we employed a dual-platform metabolomics approach combining liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) to identify key metabolic alterations associated with CNV. Our results revealed significant changes in metabolic pathways during CNV progression. Using a myeloid lineage tracing mouse model, we further explored how Pipecolic acid regulates interactions between monocytes/macrophages and endothelial cells, key players in CNV development. We found that Pipecolic acid modulates monocyte/macrophage-endothelial cell crosstalk, inhibiting pathological angiogenesis. These results provide valuable insights into the molecular mechanisms driving CNV and highlight potential therapeutic targets for treating ocular neovascular diseases.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.