Targeting the MDM2-MDM4 interaction interface reveals an otherwise therapeutically active wild-type p53 in colorectal cancer.

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Molecular Oncology Pub Date : 2025-02-28 DOI:10.1002/1878-0261.70006
Sonia Valentini, Giada Mele, Marika Attili, Maria Rita Assenza, Fulvio Saccoccia, Francesca Sardina, Cinzia Rinaldo, Roberto Massari, Nicola Tirelli, Alfredo Pontecorvi, Fabiola Moretti
{"title":"Targeting the MDM2-MDM4 interaction interface reveals an otherwise therapeutically active wild-type p53 in colorectal cancer.","authors":"Sonia Valentini, Giada Mele, Marika Attili, Maria Rita Assenza, Fulvio Saccoccia, Francesca Sardina, Cinzia Rinaldo, Roberto Massari, Nicola Tirelli, Alfredo Pontecorvi, Fabiola Moretti","doi":"10.1002/1878-0261.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting the heterodimer MDM2/MDM4 is a novel and effective route for the reactivation of wild-type p53 in human tumors with reduced toxicity in nontransformed cells. To improve the therapeutic potential of peptides that interfere with MDM4 binding to MDM2, we demonstrated the tumor-suppressive activity of a short peptide (Pep3S), which is composed of the last five amino acids of the MDM4 protein. Compared to longer peptides (previously identified), Pep3S binds MDM2 with high affinity, increases p53-dependent cell death in 2D and 3D colorectal cancer models, and is more efficacious in suppressing xenograft tumor growth. Furthermore, its encapsulation in poly (lactic-co-glycolic acid) (PLGA) nanoparticles potentiated and prolonged its activity. A p53-specific target gene array revealed an uncommon p53 signature, with Pep3S leading to p53-mediated repression of a subset of p53 targets. Comparative analysis indicated that this repression is driven by p53-mediated activation of miR-34a, which is functional in Pep3S-induced cell death. Of note, unlike other p53-reactivating molecules, Pep3S led to significant downregulation of the cell cycle inhibitor CDKN1A/p21, one of the best-characterized p53-targets. Genetic manipulation of MDM4 demonstrated the requirement of the dissociated protein for p21 downregulation, whereas the miR-34a signature was not altered. At odds with Nutlin-3a, the proliferation status of nontumor muscle and lymphoblastoid cells was not altered by Pep3S. These data indicate that targeting the MDM2/MDM4 interaction region provides a different route for wild-type p53 reactivation in human tumors, potentially reducing toxicity to proliferating nontumor tissue. The development of a PLGA/Pep3S formulation represents a promising approach for therapeutic purposes.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Targeting the heterodimer MDM2/MDM4 is a novel and effective route for the reactivation of wild-type p53 in human tumors with reduced toxicity in nontransformed cells. To improve the therapeutic potential of peptides that interfere with MDM4 binding to MDM2, we demonstrated the tumor-suppressive activity of a short peptide (Pep3S), which is composed of the last five amino acids of the MDM4 protein. Compared to longer peptides (previously identified), Pep3S binds MDM2 with high affinity, increases p53-dependent cell death in 2D and 3D colorectal cancer models, and is more efficacious in suppressing xenograft tumor growth. Furthermore, its encapsulation in poly (lactic-co-glycolic acid) (PLGA) nanoparticles potentiated and prolonged its activity. A p53-specific target gene array revealed an uncommon p53 signature, with Pep3S leading to p53-mediated repression of a subset of p53 targets. Comparative analysis indicated that this repression is driven by p53-mediated activation of miR-34a, which is functional in Pep3S-induced cell death. Of note, unlike other p53-reactivating molecules, Pep3S led to significant downregulation of the cell cycle inhibitor CDKN1A/p21, one of the best-characterized p53-targets. Genetic manipulation of MDM4 demonstrated the requirement of the dissociated protein for p21 downregulation, whereas the miR-34a signature was not altered. At odds with Nutlin-3a, the proliferation status of nontumor muscle and lymphoblastoid cells was not altered by Pep3S. These data indicate that targeting the MDM2/MDM4 interaction region provides a different route for wild-type p53 reactivation in human tumors, potentially reducing toxicity to proliferating nontumor tissue. The development of a PLGA/Pep3S formulation represents a promising approach for therapeutic purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
靶向 MDM2-MDM4 相互作用界面揭示了结直肠癌中原本具有治疗活性的野生型 p53。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
期刊最新文献
Correction to "SPT6 recruits SND1 to co-activate human telomerase reverse transcriptase to promote colon cancer progression". Comparing self-reported race and genetic ancestry for identifying potential differentially methylated sites in endometrial cancer: insights from African ancestry proportions using machine learning models. Metabolism and signaling crosstalk in glioblastoma progression and therapy resistance. Sustained cancer-relevant alternative RNA splicing events driven by PRMT5 in high-risk neuroblastoma. A novel TAp73-inhibitory compound counteracts stemness features of glioblastoma stem cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1