Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma.

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2025-02-28 DOI:10.1038/s41698-025-00844-6
Bohai Feng, Di Zhao, Zheng Zhang, Ru Jia, Patrick J Schuler, Jochen Hess
{"title":"Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma.","authors":"Bohai Feng, Di Zhao, Zheng Zhang, Ru Jia, Patrick J Schuler, Jochen Hess","doi":"10.1038/s41698-025-00844-6","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSC) is a prevalent malignancy, with HPV-negative tumors exhibiting aggressive behavior and poor prognosis. Understanding the intricate interactions within the tumor microenvironment (TME) is crucial for improving prognostic models and identifying therapeutic targets. Using BulkSignalR, we identified ligand-receptor interactions in HPV-negative TCGA-HNSC cohort (n = 395). A prognostic model incorporating 14 ligand-receptor pairs was developed using random forest survival analysis and LASSO-penalized Cox regression based on overall survival and progression-free interval of HPV-negative tumors from TCGA-HNSC. Multi-omics analysis revealed distinct molecular features between risk groups, including differences in extracellular matrix remodeling, angiogenesis, immune infiltration, and APOBEC enzyme activity. Deep learning-based tissue morphology analysis on HE-stained whole slide images further improved risk stratification, with region selection via Silicon enhancing accuracy. The integration of routine histopathology with deep learning and multi-omics data offers a clinically accessible tool for precise risk stratification, facilitating personalized treatment strategies in HPV-negative HNSC.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"57"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00844-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Head and neck squamous cell carcinoma (HNSC) is a prevalent malignancy, with HPV-negative tumors exhibiting aggressive behavior and poor prognosis. Understanding the intricate interactions within the tumor microenvironment (TME) is crucial for improving prognostic models and identifying therapeutic targets. Using BulkSignalR, we identified ligand-receptor interactions in HPV-negative TCGA-HNSC cohort (n = 395). A prognostic model incorporating 14 ligand-receptor pairs was developed using random forest survival analysis and LASSO-penalized Cox regression based on overall survival and progression-free interval of HPV-negative tumors from TCGA-HNSC. Multi-omics analysis revealed distinct molecular features between risk groups, including differences in extracellular matrix remodeling, angiogenesis, immune infiltration, and APOBEC enzyme activity. Deep learning-based tissue morphology analysis on HE-stained whole slide images further improved risk stratification, with region selection via Silicon enhancing accuracy. The integration of routine histopathology with deep learning and multi-omics data offers a clinically accessible tool for precise risk stratification, facilitating personalized treatment strategies in HPV-negative HNSC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配体-受体相互作用与组织病理学相结合,改善 HPV 阴性头颈部鳞状细胞癌的预后模型。
头颈部鳞状细胞癌(HNSC)是一种常见的恶性肿瘤,其中HPV阴性肿瘤表现出侵袭性和不良预后。了解肿瘤微环境(TME)内错综复杂的相互作用对于改善预后模型和确定治疗靶点至关重要。利用 BulkSignalR,我们确定了 HPV 阴性 TCGA-HNSC 队列(n = 395)中配体与受体之间的相互作用。基于TCGA-HNSC中HPV阴性肿瘤的总生存期和无进展间期,我们使用随机森林生存分析和LASSO-penalized Cox回归建立了一个包含14对配体-受体的预后模型。多组学分析揭示了风险组之间不同的分子特征,包括细胞外基质重塑、血管生成、免疫浸润和APOBEC酶活性的差异。对 HE 染色的全玻片图像进行基于深度学习的组织形态分析进一步提高了风险分层的准确性,通过硅进行区域选择提高了准确性。常规组织病理学与深度学习和多组学数据的整合为精确的风险分层提供了临床可用的工具,促进了HPV阴性HNSC的个性化治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
LINE-1 ORF1p expression occurs in clear cell ovarian carcinoma precursors and is a candidate blood biomarker. Neoadjuvant immune checkpoint inhibitors for hepatocellular carcinoma. Extended spectrum of cancers in PTEN hamartoma tumor syndrome. Whole-genome analysis of an aggressive metastatic pancreatic solid pseudopapillary neoplasm. Complement activation in tumor microenvironment after neoadjuvant therapy and its impact on pancreatic cancer outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1