A differentiated β-globin gene replacement strategy uses heterologous introns to restore physiological expression.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2025-02-27 DOI:10.1016/j.ymthe.2025.02.036
Kirby A Wallace, Trevor L Gerstenberg, Craig L Ennis, Juan A Perez-Bermejo, James R Partridge, Christopher Bandoro, William M Matern, Gaia Andreoletti, Kristina Krassovsky, Shaheen Kabir, Cassandra D Lalisan, Aishwarya R Churi, Glen M Chew, Lana Corbo, Jon E Vincelette, Timothy D Klasson, Brian J Silva, Yuri G Strukov, B Joy Quejarro, Kaisle A Hill, Sebastian Treusch, Jane L Grogan, Daniel P Dever, Matthew H Porteus, Beeke Wienert
{"title":"A differentiated β-globin gene replacement strategy uses heterologous introns to restore physiological expression.","authors":"Kirby A Wallace, Trevor L Gerstenberg, Craig L Ennis, Juan A Perez-Bermejo, James R Partridge, Christopher Bandoro, William M Matern, Gaia Andreoletti, Kristina Krassovsky, Shaheen Kabir, Cassandra D Lalisan, Aishwarya R Churi, Glen M Chew, Lana Corbo, Jon E Vincelette, Timothy D Klasson, Brian J Silva, Yuri G Strukov, B Joy Quejarro, Kaisle A Hill, Sebastian Treusch, Jane L Grogan, Daniel P Dever, Matthew H Porteus, Beeke Wienert","doi":"10.1016/j.ymthe.2025.02.036","DOIUrl":null,"url":null,"abstract":"<p><p>β-hemoglobinopathies are common monogenic disorders. In sickle cell disease (SCD) a single mutation in the β-globin (HBB) gene results in dysfunctional hemoglobin protein, while in β-thalassemia, over 300 mutations distributed across the gene reduce β-globin levels and cause severe anemia. Genetic engineering replacing the whole HBB gene through homology directed repair (HDR) is an ideal strategy to restore a benign genotype and rescue HBB expression for most genotypes. However, this is technically challenging because 1) the insert must not be homologous to the endogenous gene and 2) synonymous codon-optimized, intron-less sequences may not reconstitute adequate β-globin levels. Here, we developed an HBB gene replacement strategy using CRISPR-Cas9 that successfully addresses these challenges. We determined that a DNA donor containing a diverged HBB coding sequence and heterologous introns to avoid sequence homology provides proper physiological expression. We identified a DNA donor that uses truncated γ-globin introns, results in 34% HDR, rescues β-globin expression in in vitro models of SCD and β-thalassemia in hematopoietic stem and progenitor cells (HSPCs). Furthermore, while HDR allele frequency dropped in vivo, it was maintained at ∼15%, demonstrating editing of long-term repopulating HSPCs. In summary, our HBB gene replacement strategy offers a differentiated approach by restoring naturally regulated adult hemoglobin expression.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-hemoglobinopathies are common monogenic disorders. In sickle cell disease (SCD) a single mutation in the β-globin (HBB) gene results in dysfunctional hemoglobin protein, while in β-thalassemia, over 300 mutations distributed across the gene reduce β-globin levels and cause severe anemia. Genetic engineering replacing the whole HBB gene through homology directed repair (HDR) is an ideal strategy to restore a benign genotype and rescue HBB expression for most genotypes. However, this is technically challenging because 1) the insert must not be homologous to the endogenous gene and 2) synonymous codon-optimized, intron-less sequences may not reconstitute adequate β-globin levels. Here, we developed an HBB gene replacement strategy using CRISPR-Cas9 that successfully addresses these challenges. We determined that a DNA donor containing a diverged HBB coding sequence and heterologous introns to avoid sequence homology provides proper physiological expression. We identified a DNA donor that uses truncated γ-globin introns, results in 34% HDR, rescues β-globin expression in in vitro models of SCD and β-thalassemia in hematopoietic stem and progenitor cells (HSPCs). Furthermore, while HDR allele frequency dropped in vivo, it was maintained at ∼15%, demonstrating editing of long-term repopulating HSPCs. In summary, our HBB gene replacement strategy offers a differentiated approach by restoring naturally regulated adult hemoglobin expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
A VSV-based oral rabies vaccine was sentineled by Peyer's patches and induced a timely and durable immune response. CAR-mediated target recognition limits TCR-mediated target recognition of TCR- and CAR-dual-receptor-edited T cells. Gene Therapy Then and Now: A Look Back at Changes in the Field Over the Past 25 Years. Viral and Cellular Insulators Promote Sustained HSV Vector Mediated Transgene Expression in Brain. A differentiated β-globin gene replacement strategy uses heterologous introns to restore physiological expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1