Temperature-Dependent Stepwise Dissociation of Methanol on Co(0001)

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-03-03 DOI:10.1021/acs.jpclett.5c00185
Junhao Li, Fangfang Liu, Yalong Jiang, Sijia Zhang, Ziling Zeng, Lanlan Yao, Xiao Chen, Yuan Tan, Xingkun Chen, Qing Guo, Chuanqi Huang, Jianqiang Zhong, Xueming Yang, Wenshao Yang
{"title":"Temperature-Dependent Stepwise Dissociation of Methanol on Co(0001)","authors":"Junhao Li, Fangfang Liu, Yalong Jiang, Sijia Zhang, Ziling Zeng, Lanlan Yao, Xiao Chen, Yuan Tan, Xingkun Chen, Qing Guo, Chuanqi Huang, Jianqiang Zhong, Xueming Yang, Wenshao Yang","doi":"10.1021/acs.jpclett.5c00185","DOIUrl":null,"url":null,"abstract":"An atomic-level understanding of the elementary steps of catalytic reactions is crucial for a more molecularly driven catalyst design. Herein, we present a comprehensive study of temperature-dependent stepwise decomposition of methanol on a single-crystal Co(0001) surface using a series of surface science techniques and density functional theory calculation. Visualization of surface products was realized by scanning tunneling microscopy. The first step of methanol dissociation is cleavage of the OH bond to the methoxy group and H atom, showing clover-like and honeycomb structures, respectively. Further dissociation to CO through C–H cleavage was ascertained by infrared reflection absorption spectroscopy, and no intermediates, such as CH<sub>2</sub>O or CHO, were observed. The final product CO molecules showed versatile configurations with different periodicities on the surface under heating or tip-manipulation conditions.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"55 11 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00185","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An atomic-level understanding of the elementary steps of catalytic reactions is crucial for a more molecularly driven catalyst design. Herein, we present a comprehensive study of temperature-dependent stepwise decomposition of methanol on a single-crystal Co(0001) surface using a series of surface science techniques and density functional theory calculation. Visualization of surface products was realized by scanning tunneling microscopy. The first step of methanol dissociation is cleavage of the OH bond to the methoxy group and H atom, showing clover-like and honeycomb structures, respectively. Further dissociation to CO through C–H cleavage was ascertained by infrared reflection absorption spectroscopy, and no intermediates, such as CH2O or CHO, were observed. The final product CO molecules showed versatile configurations with different periodicities on the surface under heating or tip-manipulation conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Size-Transferable Prediction of Excited State Properties for Molecular Assemblies with a Machine Learning Exciton Model Nonthermal Effect of Microwave Irradiation on the Molecular Level: Emergence of Coherent Subterahertz Vibrations of Hydration Water in Reverse Micelles Temperature-Dependent Stepwise Dissociation of Methanol on Co(0001) Unfiltered Broadband Probes Can Obscure Long Time Dynamics in Populations Engaged in Second-Order Processes Including Annihilation Coexistence of Direct and Indirect Crystallographic Pathways in Deoxidation of Molybdenum(VI) Oxide Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1