Sustainable Atrazine Removal from Real Water Matrices Using Solar-Powered Electrooxidation

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2025-03-04 DOI:10.1007/s11270-025-07822-5
Bishwatma Biswas, Sudha Goel
{"title":"Sustainable Atrazine Removal from Real Water Matrices Using Solar-Powered Electrooxidation","authors":"Bishwatma Biswas,&nbsp;Sudha Goel","doi":"10.1007/s11270-025-07822-5","DOIUrl":null,"url":null,"abstract":"<div><p>The removal of pesticides from water sources is critically important for safe and clean drinking water. We investigated atrazine (ATZ) removal from various natural water sources using electrooxidation (EO) to cater to the need for safe drinking water. Under optimum operating conditions, 99% ATZ and ~ 70% TOC removal was achieved in 120 min of electrolysis time. Radical scavenging study and Electron Spin Paramagnetic Resonance (EPR) test showed that OH radicals and singlet oxygen were primarily responsible for the ATZ removal. ATZ removal was studied using synthetic water, filtered water, and river water, and the highest removal efficiencies observed were 98.30 ± 1.02%, 84.57 ± 1.18%, and 72.51 ± 1.34%, respectively. The phytotoxicity of EO-treated water was assessed using <i>Vigna radiata</i> seeds. The seed germination percentages observed at 0, 30, 90, and 120 min of EO treatment were 30, 50, 70, and 90%, respectively, compared to 100% obtained in the control (i.e., water without ATZ). Using solar energy as a power source instead of DC power reduced the total cost of the EO process by 12.78%. The EO process can effectively treat contaminated water, aiming to improve water quality and contributing to achieve sustainable development goals.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07822-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The removal of pesticides from water sources is critically important for safe and clean drinking water. We investigated atrazine (ATZ) removal from various natural water sources using electrooxidation (EO) to cater to the need for safe drinking water. Under optimum operating conditions, 99% ATZ and ~ 70% TOC removal was achieved in 120 min of electrolysis time. Radical scavenging study and Electron Spin Paramagnetic Resonance (EPR) test showed that OH radicals and singlet oxygen were primarily responsible for the ATZ removal. ATZ removal was studied using synthetic water, filtered water, and river water, and the highest removal efficiencies observed were 98.30 ± 1.02%, 84.57 ± 1.18%, and 72.51 ± 1.34%, respectively. The phytotoxicity of EO-treated water was assessed using Vigna radiata seeds. The seed germination percentages observed at 0, 30, 90, and 120 min of EO treatment were 30, 50, 70, and 90%, respectively, compared to 100% obtained in the control (i.e., water without ATZ). Using solar energy as a power source instead of DC power reduced the total cost of the EO process by 12.78%. The EO process can effectively treat contaminated water, aiming to improve water quality and contributing to achieve sustainable development goals.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Target Fishing and Molecular Docking for Phenanthrene–pyrene Co-degradation of the Niche Effect of Polycyclic Aromatic Hydrocarbons in Reclaimed Water Comprehensive Study of Nickel Adsorption from Tannery Effluent Using Rumex Abyssinicus-Based Activated Carbon: Optimization, Isotherm, Kinetic, and Economic Perspectives for Egypt Sustainable Atrazine Removal from Real Water Matrices Using Solar-Powered Electrooxidation Impact of the Aged Polyvinyl Chloride Microplastics on the Adsorption Behavior of Tildipirosin and Environmental Risk Assessment Visible Light-Driven Photocatalytic Degradation of Organic Dyes using Graphene Oxide and Titanium Dioxide (TiO2-GO) Heterojunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1