Preparation and Performance Evaluation of Temperature- and Salt-Resistant Hydrophobically Associated Polymer Fracturing Fluids

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2025-02-20 DOI:10.1021/acsomega.4c1002310.1021/acsomega.4c10023
Xianzheng Li*, Chunfu Pan, Hao Chen, Zheng Zhang and Kun Ning, 
{"title":"Preparation and Performance Evaluation of Temperature- and Salt-Resistant Hydrophobically Associated Polymer Fracturing Fluids","authors":"Xianzheng Li*,&nbsp;Chunfu Pan,&nbsp;Hao Chen,&nbsp;Zheng Zhang and Kun Ning,&nbsp;","doi":"10.1021/acsomega.4c1002310.1021/acsomega.4c10023","DOIUrl":null,"url":null,"abstract":"<p >The development of deep oil and gas resources faces the challenge of high-temperature environments, where the performance of traditional fracturing fluids is limited. Therefore, there is an urgent need to develop fracturing fluid systems capable of withstanding high-temperature (up to 200 °C) and high-salinity (up to 45 g/L NaCl and multivalent ions) environments. This study explores the preparation and performance evaluation of a novel high-temperature (up to 200 °C) and salt-resistant (up to 45 g/L NaCl and multivalent ions) hydrophobically associated polymer fracturing fluid, focusing on its thickening mechanism and stability under extreme reservoir conditions. Key equipment used includes a rheometer for viscosity measurements and an environmental scanning electron microscope for microstructure observation. The base fluid maintained an apparent viscosity of 32.4 mPa·s at 200 °C, demonstrating excellent thermal stability. Long-term evaluations showed a viscosity retention rate of 94.9% after 90 days in high-salinity conditions, indicating outstanding durability. Sand-carrying tests revealed ceramic grain settling rates below 0.48 cm/min, confirming strong suspension capability. The fracturing fluid system exhibited low formation damage rates of 16.85% and minimal proppant pack damage, with a conductivity reduction of only 20.08%, both well below industry standards. These findings provide technical support for efficient fracturing operations in deep and ultradeep wells, particularly in environments with temperatures up to 200 °C and salinities exceeding 45 g/L NaCl, contributing to the development of fracturing fluids for such challenging conditions.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8281–8291 8281–8291"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c10023","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of deep oil and gas resources faces the challenge of high-temperature environments, where the performance of traditional fracturing fluids is limited. Therefore, there is an urgent need to develop fracturing fluid systems capable of withstanding high-temperature (up to 200 °C) and high-salinity (up to 45 g/L NaCl and multivalent ions) environments. This study explores the preparation and performance evaluation of a novel high-temperature (up to 200 °C) and salt-resistant (up to 45 g/L NaCl and multivalent ions) hydrophobically associated polymer fracturing fluid, focusing on its thickening mechanism and stability under extreme reservoir conditions. Key equipment used includes a rheometer for viscosity measurements and an environmental scanning electron microscope for microstructure observation. The base fluid maintained an apparent viscosity of 32.4 mPa·s at 200 °C, demonstrating excellent thermal stability. Long-term evaluations showed a viscosity retention rate of 94.9% after 90 days in high-salinity conditions, indicating outstanding durability. Sand-carrying tests revealed ceramic grain settling rates below 0.48 cm/min, confirming strong suspension capability. The fracturing fluid system exhibited low formation damage rates of 16.85% and minimal proppant pack damage, with a conductivity reduction of only 20.08%, both well below industry standards. These findings provide technical support for efficient fracturing operations in deep and ultradeep wells, particularly in environments with temperatures up to 200 °C and salinities exceeding 45 g/L NaCl, contributing to the development of fracturing fluids for such challenging conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Publication Information Issue Editorial Masthead Predictive Significance of Glycosyltransferase-Related lncRNAs in Endometrial Cancer: A Comprehensive Analysis and Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1