Development of a field-programmable gate array-based real-time generic solver for power electronics circuits with arbitrary configurations

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC High Voltage Pub Date : 2025-02-12 DOI:10.1049/hve2.70001
Yuan Chen, Jiadai Liu, Hui Ding, Yi Zhang
{"title":"Development of a field-programmable gate array-based real-time generic solver for power electronics circuits with arbitrary configurations","authors":"Yuan Chen,&nbsp;Jiadai Liu,&nbsp;Hui Ding,&nbsp;Yi Zhang","doi":"10.1049/hve2.70001","DOIUrl":null,"url":null,"abstract":"<p>Using a field-programmable gate array (FPGA) as the core computational engine, this paper proposes a digital real-time electromagnetic transient simulator for a generic power electronic system. The <i>LC</i> switching model is employed for constant network conductance representation. The fully paralleled and pipelined design for network solutions and component computation accomplished the highest performance and efficiency on the FPGA. A customised 48-bit floating-point data format is proposed to achieve high simulation precision. This dedicated design is necessary for power electronic simulation. A typical power electronic transformer, which is a heavy computation burden for real-time simulation, demonstrates the effectiveness of the proposed simulator.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"47-55"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70001","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Using a field-programmable gate array (FPGA) as the core computational engine, this paper proposes a digital real-time electromagnetic transient simulator for a generic power electronic system. The LC switching model is employed for constant network conductance representation. The fully paralleled and pipelined design for network solutions and component computation accomplished the highest performance and efficiency on the FPGA. A customised 48-bit floating-point data format is proposed to achieve high simulation precision. This dedicated design is necessary for power electronic simulation. A typical power electronic transformer, which is a heavy computation burden for real-time simulation, demonstrates the effectiveness of the proposed simulator.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为具有任意配置的电力电子电路开发基于现场可编程门阵列的实时通用求解器
本文以现场可编程门阵列(FPGA)为核心计算引擎,提出了一种通用电力电子系统的数字实时电磁瞬态仿真器。采用 LC 开关模型来表示恒定的网络电导。网络解决方案和元件计算的全并行流水线设计在 FPGA 上实现了最高的性能和效率。为实现高仿真精度,提出了一种定制的 48 位浮点数据格式。这种专用设计对于电力电子仿真十分必要。一个典型的电力电子变压器是实时仿真的沉重计算负担,它证明了所提出的仿真器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
期刊最新文献
Guest Editorial: Special issue on real-time simulation and validation of modular multilevel converter-based high-voltage direct current systems Development of a field-programmable gate array-based real-time generic solver for power electronics circuits with arbitrary configurations Comparative studies of C4F7N-based gas mixtures as the eco-friendly alternative to SF6 for interrupting applications Rapid system prototype-based physical simulation platforms for power systems with high penetration of inverter-based resources Electrohydraulic effect of microsecond pulsed discharge in transformer oils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1