Comparative analysis of the heart histological structure, metabolic enzyme activities and transcriptome profiles of juvenile and adult yellowfin tuna (Thunnus albacares) in the South China Sea

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology D-Genomics & Proteomics Pub Date : 2025-02-27 DOI:10.1016/j.cbd.2025.101460
Xu Ji , Ying Zou , Wanlin Guan , Xiameng Su , Jigui Yuan , Qian Li , Zhiyuan Lu , Juan Xiao , Hai Huang , Mei Wang , Zhiqiang Guo
{"title":"Comparative analysis of the heart histological structure, metabolic enzyme activities and transcriptome profiles of juvenile and adult yellowfin tuna (Thunnus albacares) in the South China Sea","authors":"Xu Ji ,&nbsp;Ying Zou ,&nbsp;Wanlin Guan ,&nbsp;Xiameng Su ,&nbsp;Jigui Yuan ,&nbsp;Qian Li ,&nbsp;Zhiyuan Lu ,&nbsp;Juan Xiao ,&nbsp;Hai Huang ,&nbsp;Mei Wang ,&nbsp;Zhiqiang Guo","doi":"10.1016/j.cbd.2025.101460","DOIUrl":null,"url":null,"abstract":"<div><div>The yellowfin tuna is a large marine carnivorous fish with high commercial value. It is known for its unique physiological characteristics and holds significant potential for aquaculture. However, research on this species' developmental biology and physiology remains limited, particularly regarding the structural characteristics and functional changes in the developing heart. To investigate the differences in cardiac tissue structure and function at different developmental stages in yellowfin tuna, we conducted comparative analyses of histology, metabolic enzyme activity, and transcriptomes. Hematoxylin and eosin (H&amp;E) and Masson staining revealed that cardiac muscle fibers were thicker and more compact, and the area of collagen fibers was significantly increased in adult fish compared to juvenile fish (<em>p</em> &lt; 0.001). Additionally, the enzyme activities of Na<sup>+</sup>K<sup>+</sup>-ATPase, Ca<sup>2+</sup>Mg<sup>2+</sup>-ATPase, carnitine palmitoyltransferase 1 (CPT-1), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were notably greater in adult fish compared to juvenile fish (<em>p</em> &lt; 0.05). Comparative transcriptome analysis identified 1293 differentially expressed genes (DEGs) between juvenile and adult fish. Functional enrichment analyses indicated that these differential genes are primarily closely associated with heart development and metabolic regulation pathways. Furthermore, key metabolism-related DEGs, such as <em>acsl3b</em>, <em>acsbg2</em>, <em>acsl1a</em>, and <em>cpt1ab</em>, were further identified, and quantitative real-time PCR (qRT-PCR) validated the accuracy of the results. In conclusion, this study provides a systematic analysis of the differences in histology, metabolic enzyme activities, and transcriptomics between the hearts of juvenile and adult yellowfin tuna, providing foundational data for future research on heart development in the later stages of yellowfin tuna and contributing to the advancement of aquaculture practices for this species.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"55 ","pages":"Article 101460"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000486","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The yellowfin tuna is a large marine carnivorous fish with high commercial value. It is known for its unique physiological characteristics and holds significant potential for aquaculture. However, research on this species' developmental biology and physiology remains limited, particularly regarding the structural characteristics and functional changes in the developing heart. To investigate the differences in cardiac tissue structure and function at different developmental stages in yellowfin tuna, we conducted comparative analyses of histology, metabolic enzyme activity, and transcriptomes. Hematoxylin and eosin (H&E) and Masson staining revealed that cardiac muscle fibers were thicker and more compact, and the area of collagen fibers was significantly increased in adult fish compared to juvenile fish (p < 0.001). Additionally, the enzyme activities of Na+K+-ATPase, Ca2+Mg2+-ATPase, carnitine palmitoyltransferase 1 (CPT-1), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were notably greater in adult fish compared to juvenile fish (p < 0.05). Comparative transcriptome analysis identified 1293 differentially expressed genes (DEGs) between juvenile and adult fish. Functional enrichment analyses indicated that these differential genes are primarily closely associated with heart development and metabolic regulation pathways. Furthermore, key metabolism-related DEGs, such as acsl3b, acsbg2, acsl1a, and cpt1ab, were further identified, and quantitative real-time PCR (qRT-PCR) validated the accuracy of the results. In conclusion, this study provides a systematic analysis of the differences in histology, metabolic enzyme activities, and transcriptomics between the hearts of juvenile and adult yellowfin tuna, providing foundational data for future research on heart development in the later stages of yellowfin tuna and contributing to the advancement of aquaculture practices for this species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
期刊最新文献
α-Ketoglutarate modulates the mechanisms of toxicity in crucian carp kidneys chronically exposed to NaHCO3: Metabolomics insights The influence of sex on the intestinal flora of Procypris mera Insights into sexual dimorphisms: Analysis of lipid metabolites, biochemical markers, and sex steroid profiling in serum of captive Chinese Sturgeon (Acipenser sinesis) at early stage of gonadal development Comparative transcriptome sequencing of two shell colour variants of Haliotis discus hannai identifying genes involved in shell formation and photosensitivity Physiological analysis and transcriptome sequencing revealed that HSPA1 was involved in response to heat stress in thick-shell mussels, Mytilus coruscus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1