Tasnima Alam Asa , Chabungbam Dhurbachandra Singh , Thokchom Simander Singh , Saleh Salahi , Kazi Morshed Alom , Young Jun Seo
{"title":"Nonenzymatically modified mRNA for regulating translation and apoptosis by modulating Cancer epigenetics","authors":"Tasnima Alam Asa , Chabungbam Dhurbachandra Singh , Thokchom Simander Singh , Saleh Salahi , Kazi Morshed Alom , Young Jun Seo","doi":"10.1016/j.bioorg.2025.108328","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employed imidazole-activated natural or modified guanosine derivatives to extend the 3′ ends of mRNA using a nonenzymatic method beyond 30 poly-A tails. We evaluated their impact on the translation activity in cell studies using three genes: GFP, Luciferase, and Apoptin. The assessments were conducted through cell imaging, fluorescence, luminescence, western blot analysis, and RT-qPCR to evaluate varying apoptosis-mediated EZH2 expression in cancer epigenetics, among the compounds tested GMP-2-amino-IM, 2′O-Me-2-amino-IM, and N7-(2-MePy)-GMP-IM. The sugar-modified 2′O-Me-GMP-2-amino-IM demonstrated the most favorable results as mRNAs treated with this compound exhibited higher expression levels with promising mRNA stability relative to the control mRNA (without any extension) and other tested compounds. Subsequently, we transfected cancer cells with nonenzymatically modified apoptin mRNAs by utilizing the three imidazole-activated guanosine derivatives compounds and monitored the induced apoptosis. These findings suggest that 2′O-Me-2-amino-IM-modified apoptin mRNA could serve as a promising tool for cancer therapy by inducing apoptosis while selectively modulating EZH2 expression, a key regulator in oncogene suppression.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"157 ","pages":"Article 108328"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825002081","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we employed imidazole-activated natural or modified guanosine derivatives to extend the 3′ ends of mRNA using a nonenzymatic method beyond 30 poly-A tails. We evaluated their impact on the translation activity in cell studies using three genes: GFP, Luciferase, and Apoptin. The assessments were conducted through cell imaging, fluorescence, luminescence, western blot analysis, and RT-qPCR to evaluate varying apoptosis-mediated EZH2 expression in cancer epigenetics, among the compounds tested GMP-2-amino-IM, 2′O-Me-2-amino-IM, and N7-(2-MePy)-GMP-IM. The sugar-modified 2′O-Me-GMP-2-amino-IM demonstrated the most favorable results as mRNAs treated with this compound exhibited higher expression levels with promising mRNA stability relative to the control mRNA (without any extension) and other tested compounds. Subsequently, we transfected cancer cells with nonenzymatically modified apoptin mRNAs by utilizing the three imidazole-activated guanosine derivatives compounds and monitored the induced apoptosis. These findings suggest that 2′O-Me-2-amino-IM-modified apoptin mRNA could serve as a promising tool for cancer therapy by inducing apoptosis while selectively modulating EZH2 expression, a key regulator in oncogene suppression.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.