José Salas-Cáceres , Riccardo Balia , Marcos Salas-Pascual , Javier Lorenzo-Navarro , Modesto Castrillón-Santana
{"title":"Gran canaria vegetation segmentation dataset from multi-year aerial imagery for environmental monitoring and conservation","authors":"José Salas-Cáceres , Riccardo Balia , Marcos Salas-Pascual , Javier Lorenzo-Navarro , Modesto Castrillón-Santana","doi":"10.1016/j.dib.2025.111419","DOIUrl":null,"url":null,"abstract":"<div><div>Vegetation maps are an essential tool for territorial planning, enabling the identification of areas requiring protection and facilitating the study of key ecosystem dynamics such as their evolution over time and the threats they face. These aspects are especially critical in island territories, where their fragmented nature and isolation from the mainland pose significant challenges to the development of such documentation. Traditionally, these maps have relied on local experts, requiring extensive fieldwork, significant time and financial resources. To address these challenges, a novel dataset focused on Gran Canaria (Canary Islands, Spain) is presented, designed to allow researchers to develop and test deep learning models that automatically generate vegetation maps using computer vision techniques.</div><div>This dataset is unique in the field of aerial image-based semantic segmentation, as it provides detailed annotations for 20 well-defined vegetation communities, going beyond the broad classifications commonly found in existing datasets (e.g., forests or grasslands). Additionally, an alternative version of the dataset includes five non-vegetal classes, such as water bodies, roads, or buildings to support more visually comprehensive segmentation tasks.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"59 ","pages":"Article 111419"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925001519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vegetation maps are an essential tool for territorial planning, enabling the identification of areas requiring protection and facilitating the study of key ecosystem dynamics such as their evolution over time and the threats they face. These aspects are especially critical in island territories, where their fragmented nature and isolation from the mainland pose significant challenges to the development of such documentation. Traditionally, these maps have relied on local experts, requiring extensive fieldwork, significant time and financial resources. To address these challenges, a novel dataset focused on Gran Canaria (Canary Islands, Spain) is presented, designed to allow researchers to develop and test deep learning models that automatically generate vegetation maps using computer vision techniques.
This dataset is unique in the field of aerial image-based semantic segmentation, as it provides detailed annotations for 20 well-defined vegetation communities, going beyond the broad classifications commonly found in existing datasets (e.g., forests or grasslands). Additionally, an alternative version of the dataset includes five non-vegetal classes, such as water bodies, roads, or buildings to support more visually comprehensive segmentation tasks.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.