S. Maheen Abdul Rahman , Gurpreet Singh , Mhd Shabbu Khan , Arun Kumar Balasubramaniam , Vikramdeep Monga
{"title":"Recent developments of pyrimidine appended HIV-1 non-nucleoside reverse transcriptase inhibitors","authors":"S. Maheen Abdul Rahman , Gurpreet Singh , Mhd Shabbu Khan , Arun Kumar Balasubramaniam , Vikramdeep Monga","doi":"10.1016/j.bioorg.2025.108273","DOIUrl":null,"url":null,"abstract":"<div><div>Acquired Immune Deficiency Syndrome (AIDS) is an ailment that progressively weakens the immune system and is responsible for being the sole cause of 630,000 deaths worldwide in 2023. It is a potentially fatal condition that promotes the growth of malignancies and secondary infection. Viruses like Human Immunodeficiency Virus (HIV-1) and Hepatitis B virus (HBV) employ an enzyme, reverse transcriptase (RT), to replicate their genomes and spread across the host genome. RT has proved to be one of the most important therapeutic targets for the treatment of AIDS as well as for the development of new HIV-1 medications. The pyrimidine nucleus has been described as a dynamic cornerstone in developing new anti-HIV-1 medications and represents a familiar motif found in various marketed anti-HIV-1 drugs, such as diaryl pyrimidines (DAPYs). The rapid emergence of drug-resistant viral strains due to mutations in the HIV-1 RT structure along with their unfavourable pharmacokinetics present new challenges. Recent years have witnessed tremendous progress in the design and discovery of new substituted pyrimidines as potent and selective non-nucleoside reverse transcriptase inhibitors (NNRTIs). Further, the current developments in the field of X-ray crystallography and molecular modeling have remarkably augmented the design strategies, with simultaneous improvement in the resistance profiles. This article comprehensively reviews recent trends in the design and development of pyrimidine-based HIV-1 NNRTIs. The study emphasizes their biological activities, structure-activity relationship, and docking studies to guide the rational design of NNRTIs with desired potency, safety, and efficacy.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"157 ","pages":"Article 108273"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825001531","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is an ailment that progressively weakens the immune system and is responsible for being the sole cause of 630,000 deaths worldwide in 2023. It is a potentially fatal condition that promotes the growth of malignancies and secondary infection. Viruses like Human Immunodeficiency Virus (HIV-1) and Hepatitis B virus (HBV) employ an enzyme, reverse transcriptase (RT), to replicate their genomes and spread across the host genome. RT has proved to be one of the most important therapeutic targets for the treatment of AIDS as well as for the development of new HIV-1 medications. The pyrimidine nucleus has been described as a dynamic cornerstone in developing new anti-HIV-1 medications and represents a familiar motif found in various marketed anti-HIV-1 drugs, such as diaryl pyrimidines (DAPYs). The rapid emergence of drug-resistant viral strains due to mutations in the HIV-1 RT structure along with their unfavourable pharmacokinetics present new challenges. Recent years have witnessed tremendous progress in the design and discovery of new substituted pyrimidines as potent and selective non-nucleoside reverse transcriptase inhibitors (NNRTIs). Further, the current developments in the field of X-ray crystallography and molecular modeling have remarkably augmented the design strategies, with simultaneous improvement in the resistance profiles. This article comprehensively reviews recent trends in the design and development of pyrimidine-based HIV-1 NNRTIs. The study emphasizes their biological activities, structure-activity relationship, and docking studies to guide the rational design of NNRTIs with desired potency, safety, and efficacy.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.