Recent developments of pyrimidine appended HIV-1 non-nucleoside reverse transcriptase inhibitors

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2025-02-17 DOI:10.1016/j.bioorg.2025.108273
S. Maheen Abdul Rahman , Gurpreet Singh , Mhd Shabbu Khan , Arun Kumar Balasubramaniam , Vikramdeep Monga
{"title":"Recent developments of pyrimidine appended HIV-1 non-nucleoside reverse transcriptase inhibitors","authors":"S. Maheen Abdul Rahman ,&nbsp;Gurpreet Singh ,&nbsp;Mhd Shabbu Khan ,&nbsp;Arun Kumar Balasubramaniam ,&nbsp;Vikramdeep Monga","doi":"10.1016/j.bioorg.2025.108273","DOIUrl":null,"url":null,"abstract":"<div><div>Acquired Immune Deficiency Syndrome (AIDS) is an ailment that progressively weakens the immune system and is responsible for being the sole cause of 630,000 deaths worldwide in 2023. It is a potentially fatal condition that promotes the growth of malignancies and secondary infection. Viruses like Human Immunodeficiency Virus (HIV-1) and Hepatitis B virus (HBV) employ an enzyme, reverse transcriptase (RT), to replicate their genomes and spread across the host genome. RT has proved to be one of the most important therapeutic targets for the treatment of AIDS as well as for the development of new HIV-1 medications. The pyrimidine nucleus has been described as a dynamic cornerstone in developing new anti-HIV-1 medications and represents a familiar motif found in various marketed anti-HIV-1 drugs, such as diaryl pyrimidines (DAPYs). The rapid emergence of drug-resistant viral strains due to mutations in the HIV-1 RT structure along with their unfavourable pharmacokinetics present new challenges. Recent years have witnessed tremendous progress in the design and discovery of new substituted pyrimidines as potent and selective non-nucleoside reverse transcriptase inhibitors (NNRTIs). Further, the current developments in the field of X-ray crystallography and molecular modeling have remarkably augmented the design strategies, with simultaneous improvement in the resistance profiles. This article comprehensively reviews recent trends in the design and development of pyrimidine-based HIV-1 NNRTIs. The study emphasizes their biological activities, structure-activity relationship, and docking studies to guide the rational design of NNRTIs with desired potency, safety, and efficacy.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"157 ","pages":"Article 108273"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825001531","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acquired Immune Deficiency Syndrome (AIDS) is an ailment that progressively weakens the immune system and is responsible for being the sole cause of 630,000 deaths worldwide in 2023. It is a potentially fatal condition that promotes the growth of malignancies and secondary infection. Viruses like Human Immunodeficiency Virus (HIV-1) and Hepatitis B virus (HBV) employ an enzyme, reverse transcriptase (RT), to replicate their genomes and spread across the host genome. RT has proved to be one of the most important therapeutic targets for the treatment of AIDS as well as for the development of new HIV-1 medications. The pyrimidine nucleus has been described as a dynamic cornerstone in developing new anti-HIV-1 medications and represents a familiar motif found in various marketed anti-HIV-1 drugs, such as diaryl pyrimidines (DAPYs). The rapid emergence of drug-resistant viral strains due to mutations in the HIV-1 RT structure along with their unfavourable pharmacokinetics present new challenges. Recent years have witnessed tremendous progress in the design and discovery of new substituted pyrimidines as potent and selective non-nucleoside reverse transcriptase inhibitors (NNRTIs). Further, the current developments in the field of X-ray crystallography and molecular modeling have remarkably augmented the design strategies, with simultaneous improvement in the resistance profiles. This article comprehensively reviews recent trends in the design and development of pyrimidine-based HIV-1 NNRTIs. The study emphasizes their biological activities, structure-activity relationship, and docking studies to guide the rational design of NNRTIs with desired potency, safety, and efficacy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Tuning the lipophilicity of new ciprofloxacin derivatives in selected ESKAPE bacteria with emphasis on E. coli mutants Mycobacterium tuberculosis d-alanine:d-alanine ligase as a case study in the measurement of competitive kinetic isotope effects for dimerization reactions Research on enhancing enzymatic degradation of anti-digestive peptides containing D-amino acids through N-terminal acetylation Berberrubine as a novel TrxR inhibitor enhances cisplatin sensitivity in the treatment of non-small cell lung cancer Reniochalistatin E: A potentiating agent and a potential novel drug delivery platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1