Li-Sha Xu;Ting Huang;Bo-Wen Zhao;Yue-Jiao Gong;Jing Liu
{"title":"Continuous Berth Allocation and Time-Variant Quay Crane Assignment: Memetic Algorithm With a Heuristic Decoding Method","authors":"Li-Sha Xu;Ting Huang;Bo-Wen Zhao;Yue-Jiao Gong;Jing Liu","doi":"10.1109/TITS.2024.3517879","DOIUrl":null,"url":null,"abstract":"The significance of maritime transportation highlights the need to enhance the efficiency of container terminals. This study addresses a challenge within maritime transportation, specifically the continuous berth allocation and time-variant quay crane assignment problem (C/T-V BACAP). We formulate a comprehensive mathematical model of C/T-V BACAP. To solve the problem, we propose an effective memetic algorithm with a heuristic decoding method, named HMA, which comprises three essential components: a three-stage heuristic decoding method, a clustering-based evolutionary strategy, and a target-guided local search operator. The three-stage heuristic decoding method guarantees solution feasibility and high quality through the entire optimization, allowing the following strategies to fully utilize their search capabilities. The clustering-based evolutionary strategy refines the search space and diversifies the promising candidates. Meanwhile, the target-guided local search operator rapidly optimizes the allocation for the challenging vessel. The experimental results demonstrate that the proposed algorithm delivers excellent performance, especially in handling large-scale instances (up to 60 vessels). Our proposed method outperforms the state-of-the-art BACAP algorithms by an average margin of 150% in terms of berth offset and waiting time in most problem instances.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 3","pages":"3387-3401"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10851413/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The significance of maritime transportation highlights the need to enhance the efficiency of container terminals. This study addresses a challenge within maritime transportation, specifically the continuous berth allocation and time-variant quay crane assignment problem (C/T-V BACAP). We formulate a comprehensive mathematical model of C/T-V BACAP. To solve the problem, we propose an effective memetic algorithm with a heuristic decoding method, named HMA, which comprises three essential components: a three-stage heuristic decoding method, a clustering-based evolutionary strategy, and a target-guided local search operator. The three-stage heuristic decoding method guarantees solution feasibility and high quality through the entire optimization, allowing the following strategies to fully utilize their search capabilities. The clustering-based evolutionary strategy refines the search space and diversifies the promising candidates. Meanwhile, the target-guided local search operator rapidly optimizes the allocation for the challenging vessel. The experimental results demonstrate that the proposed algorithm delivers excellent performance, especially in handling large-scale instances (up to 60 vessels). Our proposed method outperforms the state-of-the-art BACAP algorithms by an average margin of 150% in terms of berth offset and waiting time in most problem instances.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.