Aleksandra Jankowska , Klaudia Fidowicz , Małgorzata Rutkowska , Andrzej Kowalczyk , Marek Michalik , Lucjan Chmielarz
{"title":"Low-temperature NO conversion with NH3 over cerium-doped MWW derivatives activated with copper species†","authors":"Aleksandra Jankowska , Klaudia Fidowicz , Małgorzata Rutkowska , Andrzej Kowalczyk , Marek Michalik , Lucjan Chmielarz","doi":"10.1039/d4cy01232a","DOIUrl":null,"url":null,"abstract":"<div><div>Silica–alumina MCM-22 zeolite and its cerium-doped analogue (Ce-MCM-22) were obtained by one-pot synthesis. Additionally, the layered precursor of Ce-MCM-22 was subjected to delamination and pillaring procedures, resulting in the formation of Ce-ITQ-2 and Ce-MCM-36, respectively. The obtained micro- and micro-mesoporous supports were modified with copper cations by the ion-exchange method and tested as catalysts for NO conversion with ammonia. The zeolitic samples were characterized with respect to their chemical composition (ICP-OES), texture (low-temperature N<sub>2</sub>-sorption), structure (XRD, FT-IR, UV-vis-DR), surface acidity (NH<sub>3</sub>-TPD) and reducibility (H<sub>2</sub>-TPR). Cu-functionalized zeolites were found to be active and selective catalysts for the selective catalytic reduction of nitrogen oxides with ammonia (NH<sub>3</sub>-SCR) in the low-temperature range, effectively operating between 225 and 375 °C. The influence of bimodal porosity on the catalytic efficiency was observed when the space velocity of the reaction increased. The samples doped with cerium were more active than copper-modified silica–alumina MCM-22 in the process of NO-to-NO<sub>2</sub> oxidation, which is an important step in the fast-SCR process. The synergistic interaction of cerium–copper species together with a more open structure of the delaminated copper-modified sample (Cu–Ce-ITQ-2) influenced its activity in low-temperature NO conversion under humid reaction conditions.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 5","pages":"Pages 1456-1472"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000504","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silica–alumina MCM-22 zeolite and its cerium-doped analogue (Ce-MCM-22) were obtained by one-pot synthesis. Additionally, the layered precursor of Ce-MCM-22 was subjected to delamination and pillaring procedures, resulting in the formation of Ce-ITQ-2 and Ce-MCM-36, respectively. The obtained micro- and micro-mesoporous supports were modified with copper cations by the ion-exchange method and tested as catalysts for NO conversion with ammonia. The zeolitic samples were characterized with respect to their chemical composition (ICP-OES), texture (low-temperature N2-sorption), structure (XRD, FT-IR, UV-vis-DR), surface acidity (NH3-TPD) and reducibility (H2-TPR). Cu-functionalized zeolites were found to be active and selective catalysts for the selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) in the low-temperature range, effectively operating between 225 and 375 °C. The influence of bimodal porosity on the catalytic efficiency was observed when the space velocity of the reaction increased. The samples doped with cerium were more active than copper-modified silica–alumina MCM-22 in the process of NO-to-NO2 oxidation, which is an important step in the fast-SCR process. The synergistic interaction of cerium–copper species together with a more open structure of the delaminated copper-modified sample (Cu–Ce-ITQ-2) influenced its activity in low-temperature NO conversion under humid reaction conditions.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days