A Rare Glimpse of Paleoproterozoic Sub-Arc Mantle: The Ussuit Peridotite, West Greenland

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2025-03-04 DOI:10.1029/2024GC011928
T. McIntyre, P. Waterton, L. Li, B. Gong, X. Zha, K. Szilas, D. G. Pearson
{"title":"A Rare Glimpse of Paleoproterozoic Sub-Arc Mantle: The Ussuit Peridotite, West Greenland","authors":"T. McIntyre,&nbsp;P. Waterton,&nbsp;L. Li,&nbsp;B. Gong,&nbsp;X. Zha,&nbsp;K. Szilas,&nbsp;D. G. Pearson","doi":"10.1029/2024GC011928","DOIUrl":null,"url":null,"abstract":"<p>Mantle residues beneath Archean cratonic nuclei have been extensively studied, whereas less attention has been given to the mantle lithosphere beneath Proterozoic mobile belts that link these nuclei. Rare mantle tectonites within tectonic mélanges of Paleoproterozoic mobile belts provide information important to understanding the broader processes involved in the construction of the cratonic mantle lithosphere. Here we present mineral compositions, bulk-rock major, trace, and platinum group elements, Re-Os isotopes, and olivine oxygen isotopes from a Paleoproterozoic mantle tectonite in West Greenland–the Ussuit peridotite. The Ussuit peridotite was emplaced in the crust during the Nagssugtoqidian orogeny between 1,870 Ma and 1,775 Ma and preserves primary melt depleted characteristics that reflect &gt;30% melting, for example, Al<sub>2</sub>O<sub>3</sub> &lt; 0.4 wt.%, Ti &lt; 10 ppm, Lu/Yb &gt; 0.25, and Mg #s up to 93. Cryptic signatures of hydrous melting, for example, spinel Cr #’s &gt;65, Os/Ir ratios between 0.3 and 6, and supramantle olivine δ<sup>18</sup>O values, suggest that the high degree of melt depletion was partly inherited from a forearc or sub-arc melting environment. Re-Os isotopic systematics show melt depletion occurred at ∼2 Ga overlapping the juvenile oceanic arc crust that hosts the peridotites. This age coincides with a peak in the global production of juvenile cratonic lithosphere. Furthermore, the global Paleoproterozoic cratonic mantle has strong geochemical similarities with the Ussuit peridotites. It is suggested that subduction zone peridotites form key components of the Paleoproterozoic cratonic lithospheric mantle, creating a viscous, buoyant mantle lithosphere that contributed to the long-term stability of the greater cratonic masses.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011928","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011928","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mantle residues beneath Archean cratonic nuclei have been extensively studied, whereas less attention has been given to the mantle lithosphere beneath Proterozoic mobile belts that link these nuclei. Rare mantle tectonites within tectonic mélanges of Paleoproterozoic mobile belts provide information important to understanding the broader processes involved in the construction of the cratonic mantle lithosphere. Here we present mineral compositions, bulk-rock major, trace, and platinum group elements, Re-Os isotopes, and olivine oxygen isotopes from a Paleoproterozoic mantle tectonite in West Greenland–the Ussuit peridotite. The Ussuit peridotite was emplaced in the crust during the Nagssugtoqidian orogeny between 1,870 Ma and 1,775 Ma and preserves primary melt depleted characteristics that reflect >30% melting, for example, Al2O3 < 0.4 wt.%, Ti < 10 ppm, Lu/Yb > 0.25, and Mg #s up to 93. Cryptic signatures of hydrous melting, for example, spinel Cr #’s >65, Os/Ir ratios between 0.3 and 6, and supramantle olivine δ18O values, suggest that the high degree of melt depletion was partly inherited from a forearc or sub-arc melting environment. Re-Os isotopic systematics show melt depletion occurred at ∼2 Ga overlapping the juvenile oceanic arc crust that hosts the peridotites. This age coincides with a peak in the global production of juvenile cratonic lithosphere. Furthermore, the global Paleoproterozoic cratonic mantle has strong geochemical similarities with the Ussuit peridotites. It is suggested that subduction zone peridotites form key components of the Paleoproterozoic cratonic lithospheric mantle, creating a viscous, buoyant mantle lithosphere that contributed to the long-term stability of the greater cratonic masses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
A Machine Learning Approach to Single Garnet Geothermometry and Application to Tracing the Fingerprint of Superdeep Diamonds Mantle Dynamics in the Mediterranean and Plate Motion of the Adriatic Microplate: Insights From 3D Thermomechanical Modeling A Novel Approach of Semi-Quantifying Gypsum in Sedimentary Rocks by Visible and Near-Infrared Diffuse Reflectance Spectroscopy Magnetic Recording Fidelity of Basalts Through 3D Nanotomography Water in Eclogite and Pyroxenite Xenoliths From the Bottom 100 km of the Slave Craton (Canada) Mantle Root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1