{"title":"Guest Editorial: Special issue on real-time simulation and validation of modular multilevel converter-based high-voltage direct current systems","authors":"Chongru Liu, Jun Liang, Zhanqing Yu","doi":"10.1049/hve2.70004","DOIUrl":null,"url":null,"abstract":"<p>Modular multilevel converter-based high-voltage direct current (MMC-HVDC) technology is advancing rapidly in modern power systems, striving for higher voltage levels and greater power transmission capacity. Real-time simulation has become an essential tool for the design, analysis, and validation of MMC-HVDC systems. However, the complexity of MMC-HVDC with its numerous fast-switching power electronic components presents significant challenges in accurately capturing dynamic responses. Advanced simulation techniques are indispensable for modelling the intricate behaviours of converters, control systems, and protection mechanisms, which are critical for the reliable operation of MMC-HVDC systems.</p><p>We are honoured to have been invited by <i>High Voltage</i> to serve as guest editors for this special issue, which highlights key achievements in the field of real-time simulation and validation of MMC-HVDC systems. This issue comprises both invited and submitted papers. After rigorous peer review, four outstanding articles were selected showcasing cutting-edge research in real-time simulation technologies, advanced computational methods, and innovative platforms for emerging new power systems.</p><p>We extend our heartfelt gratitude to all contributing authors for their exceptional work and to the reviewers for their meticulous and insightful feedback, which have been instrumental in ensuring the quality of this special issue. We also sincerely thank the editorial team of <i>High Voltage</i> for their support and dedication throughout the preparation process.</p><p>We hope this special issue serves as an inspiring and educational resource, offering valuable insights and advancing the field of MMC-HVDC systems. Happy reading!</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"1-2"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.70004","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Modular multilevel converter-based high-voltage direct current (MMC-HVDC) technology is advancing rapidly in modern power systems, striving for higher voltage levels and greater power transmission capacity. Real-time simulation has become an essential tool for the design, analysis, and validation of MMC-HVDC systems. However, the complexity of MMC-HVDC with its numerous fast-switching power electronic components presents significant challenges in accurately capturing dynamic responses. Advanced simulation techniques are indispensable for modelling the intricate behaviours of converters, control systems, and protection mechanisms, which are critical for the reliable operation of MMC-HVDC systems.
We are honoured to have been invited by High Voltage to serve as guest editors for this special issue, which highlights key achievements in the field of real-time simulation and validation of MMC-HVDC systems. This issue comprises both invited and submitted papers. After rigorous peer review, four outstanding articles were selected showcasing cutting-edge research in real-time simulation technologies, advanced computational methods, and innovative platforms for emerging new power systems.
We extend our heartfelt gratitude to all contributing authors for their exceptional work and to the reviewers for their meticulous and insightful feedback, which have been instrumental in ensuring the quality of this special issue. We also sincerely thank the editorial team of High Voltage for their support and dedication throughout the preparation process.
We hope this special issue serves as an inspiring and educational resource, offering valuable insights and advancing the field of MMC-HVDC systems. Happy reading!
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf