{"title":"From Rat Tails to Glycoproteostasis: Motivated by Biology, Enabled by Biophysics, and Lucky.","authors":"Lila M Gierasch","doi":"10.1016/j.jmb.2025.169055","DOIUrl":null,"url":null,"abstract":"<p><p>In this article I tell the story of my career path and how I have come to focus my research on protein folding in the cell. My early fascination with protein folding began during my undergraduate research. My graduate work exploited reductionist approaches to explore structural features in proteins by using cyclic peptide models ofβ-turns. My career trajectory from these early days to present, described in the first section of this article, illustrates the importance of pursuing the scientific questions that one finds most exciting and seizing professional opportunities that enable these questions to be tackled productively. In addition, this trajectory shows how serendipity can shape a career path. The second section describes the extraordinary scientific discoveries I have witnessed in protein folding during my career. Here I explain how I was drawn into the world of protein folding in thecell. This turning point allowed me to participate in the explosion of research on molecular chaperones in the early 90's and to help elucidate the nature of chaperone-substrate recognition, a problem I continue to focus on. Examples of our research contributions are presented in the third section, with a perspective on major challenges for the future offered in the last section. Throughout my career I have engaged in many collaborations;each has opened new scientific doors. Importantly, I seek to instill in my trainees the same excitement about research that I feel and to foster their growth as scientists and their discovery of their own passions and talents.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169055"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article I tell the story of my career path and how I have come to focus my research on protein folding in the cell. My early fascination with protein folding began during my undergraduate research. My graduate work exploited reductionist approaches to explore structural features in proteins by using cyclic peptide models ofβ-turns. My career trajectory from these early days to present, described in the first section of this article, illustrates the importance of pursuing the scientific questions that one finds most exciting and seizing professional opportunities that enable these questions to be tackled productively. In addition, this trajectory shows how serendipity can shape a career path. The second section describes the extraordinary scientific discoveries I have witnessed in protein folding during my career. Here I explain how I was drawn into the world of protein folding in thecell. This turning point allowed me to participate in the explosion of research on molecular chaperones in the early 90's and to help elucidate the nature of chaperone-substrate recognition, a problem I continue to focus on. Examples of our research contributions are presented in the third section, with a perspective on major challenges for the future offered in the last section. Throughout my career I have engaged in many collaborations;each has opened new scientific doors. Importantly, I seek to instill in my trainees the same excitement about research that I feel and to foster their growth as scientists and their discovery of their own passions and talents.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.