{"title":"The elements of life, photosynthesis and genomics.","authors":"Sabeeha Merchant","doi":"10.1016/j.jmb.2025.169054","DOIUrl":null,"url":null,"abstract":"<p><p>I am a Professor of Biochemistry, Biophysics and Structural Biology and Plant and Microbial Biology at the University of California in Berkeley. I was born and raised in India, emigrated to the United States to attend university, earning a B.S. in Molecular Biology and a Ph.D. in Biochemistry at the University of Wisconsin in Madison. Following post-doctoral studies with Lawrence Bogorad at Harvard University where I became interested in genetic control of trace element quotas, I joined the department of Chemistry and Biochemistry at UCLA. One of the first to appreciate essential trace metals as potential regulators of gene expression, I articulated the details of the nutritional Cu regulon in Chlamydomonas. In parallel, I used genetic approaches to discover the genes governing missing steps in tetrapyrrole metabolism, including the attachment of heme to apocytochromes in the thylakoid lumen and the factors catalyzing the formation of ring V in chlorophyll. After biochemistry and classical genetics, I embraced genomics, taking a leadership role on the Joint Genome Institute's efforts on the Chlamydomonas genome and more recently, contributing to high quality assemblies of several genomes in the green algal radiation and large transcriptomic and proteomic datasets - focusing on the diel metabolic cycle in synchronized cultures and acclimation to key environmental and nutritional stressors -- that are well-used and appreciated by the community. A new venture in Berkeley is the promotion of Auxenochlorella protothecoides as the true \"green yeast\" and as a platform for engineering algae to produce useful bioproducts.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169054"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
I am a Professor of Biochemistry, Biophysics and Structural Biology and Plant and Microbial Biology at the University of California in Berkeley. I was born and raised in India, emigrated to the United States to attend university, earning a B.S. in Molecular Biology and a Ph.D. in Biochemistry at the University of Wisconsin in Madison. Following post-doctoral studies with Lawrence Bogorad at Harvard University where I became interested in genetic control of trace element quotas, I joined the department of Chemistry and Biochemistry at UCLA. One of the first to appreciate essential trace metals as potential regulators of gene expression, I articulated the details of the nutritional Cu regulon in Chlamydomonas. In parallel, I used genetic approaches to discover the genes governing missing steps in tetrapyrrole metabolism, including the attachment of heme to apocytochromes in the thylakoid lumen and the factors catalyzing the formation of ring V in chlorophyll. After biochemistry and classical genetics, I embraced genomics, taking a leadership role on the Joint Genome Institute's efforts on the Chlamydomonas genome and more recently, contributing to high quality assemblies of several genomes in the green algal radiation and large transcriptomic and proteomic datasets - focusing on the diel metabolic cycle in synchronized cultures and acclimation to key environmental and nutritional stressors -- that are well-used and appreciated by the community. A new venture in Berkeley is the promotion of Auxenochlorella protothecoides as the true "green yeast" and as a platform for engineering algae to produce useful bioproducts.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.