Response of rumen methane production and microbial community to different abatement strategies in yaks.

IF 4 2区 生物学 Q2 MICROBIOLOGY BMC Microbiology Pub Date : 2025-03-03 DOI:10.1186/s12866-025-03817-8
Qian Zhang, Tongqing Guo, Xungang Wang, Lin Wei, Yalin Wang, Shanshan Li, Hongjin Liu, Na Zhao, Shixiao Xu
{"title":"Response of rumen methane production and microbial community to different abatement strategies in yaks.","authors":"Qian Zhang, Tongqing Guo, Xungang Wang, Lin Wei, Yalin Wang, Shanshan Li, Hongjin Liu, Na Zhao, Shixiao Xu","doi":"10.1186/s12866-025-03817-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Developing region-specific dietary strategies is crucial for mitigating methane (CH<sub>4</sub>) emissions from yaks. However, there is a lack of tailored emission reduction strategies for yak production in the Qinghai-Tibet Plateau region. This study utilizes an in vitro rumen fermentation technique (Based on the ANKOMRF gas production measurement system) to investigate the effects of different dietary interventions on CH<sub>4</sub> production from regional yaks. The selected strategies-Sodium Nitrate solution, regional Medicago sativa L., and regional Helianthus tuberosus L.-were chosen for their potential to reduce CH<sub>4</sub> production through various mechanisms: Sodium Nitrate as a methanogenesis inhibitor, Medicago sativa L. for its high nutritional value and its ability to modulate microbial fermentation, and Helianthus tuberosus L. due to its inulin content, which promotes beneficial microbial activity. These dietary interventions aim not only to reduce CH<sub>4</sub> production but also to support rumen health and productivity. In addition, gas chromatography and microbial sequencing techniques were employed to identify the optimal emission reduction strategy for regional yaks and to elucidate the key factors influencing the efficacy of these strategies.</p><p><strong>Results: </strong>The results indicate that supplementing the confined feeding ration (FR group) with Sodium Nitrate (12 mmol/L, FRN group), Medicago sativa L. (25%, FRM group), and Helianthus tuberosus L. (3%, FRH group) all have the effect of reducing CH<sub>4</sub> production from yak rumen. Among these interventions, the FRM group exhibits the most significant reduction, with a decrease in rumen CH<sub>4</sub> production by 42.76% compared to the FR group. The dry matter digestibility, total volatile fatty acids (TVFA), propionate, and butyrate levels in all groups were higher than those in the FR group. However, only the FRM group reached a significant level (P < 0.01). The pH values were significantly lower than those in the FR group (P < 0.01) across all groups. Each group exhibited distinct clustering patterns in bacterial and archaeal communities compared to the FR group (P < 0.05). The α diversity of bacterial communities was significantly lower than that of the FR group (P < 0.01), while the α diversity of archaeal communities was significantly higher than that of the FR group (P < 0.01). Taxa such as Lachnospiraceae, Clostridium, Treponema, Methanomicrobiaceae, Methanosphaera, and Methanoplanus were enriched in the FR group.</p><p><strong>Conclusions: </strong>CH<sub>4</sub> production from yak rumen were significantly negatively correlated with substrate crude protein (CP) levels, fermentation fluid TVFA levels, α diversity of archaeal communities, and the relative abundance of Selenomonas and Megasphaera in bacterial communities (P < 0.01). Conversely, CH<sub>4</sub> production were significantly positively correlated with the relative abundance of Methanoplanus in archaeal communities (P < 0.01). From the perspective of CH<sub>4</sub> gas production, the ranking of emission reduction effectiveness for different mitigation strategies is as follows: FRM group > FRH group > FRN group.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"111"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03817-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Developing region-specific dietary strategies is crucial for mitigating methane (CH4) emissions from yaks. However, there is a lack of tailored emission reduction strategies for yak production in the Qinghai-Tibet Plateau region. This study utilizes an in vitro rumen fermentation technique (Based on the ANKOMRF gas production measurement system) to investigate the effects of different dietary interventions on CH4 production from regional yaks. The selected strategies-Sodium Nitrate solution, regional Medicago sativa L., and regional Helianthus tuberosus L.-were chosen for their potential to reduce CH4 production through various mechanisms: Sodium Nitrate as a methanogenesis inhibitor, Medicago sativa L. for its high nutritional value and its ability to modulate microbial fermentation, and Helianthus tuberosus L. due to its inulin content, which promotes beneficial microbial activity. These dietary interventions aim not only to reduce CH4 production but also to support rumen health and productivity. In addition, gas chromatography and microbial sequencing techniques were employed to identify the optimal emission reduction strategy for regional yaks and to elucidate the key factors influencing the efficacy of these strategies.

Results: The results indicate that supplementing the confined feeding ration (FR group) with Sodium Nitrate (12 mmol/L, FRN group), Medicago sativa L. (25%, FRM group), and Helianthus tuberosus L. (3%, FRH group) all have the effect of reducing CH4 production from yak rumen. Among these interventions, the FRM group exhibits the most significant reduction, with a decrease in rumen CH4 production by 42.76% compared to the FR group. The dry matter digestibility, total volatile fatty acids (TVFA), propionate, and butyrate levels in all groups were higher than those in the FR group. However, only the FRM group reached a significant level (P < 0.01). The pH values were significantly lower than those in the FR group (P < 0.01) across all groups. Each group exhibited distinct clustering patterns in bacterial and archaeal communities compared to the FR group (P < 0.05). The α diversity of bacterial communities was significantly lower than that of the FR group (P < 0.01), while the α diversity of archaeal communities was significantly higher than that of the FR group (P < 0.01). Taxa such as Lachnospiraceae, Clostridium, Treponema, Methanomicrobiaceae, Methanosphaera, and Methanoplanus were enriched in the FR group.

Conclusions: CH4 production from yak rumen were significantly negatively correlated with substrate crude protein (CP) levels, fermentation fluid TVFA levels, α diversity of archaeal communities, and the relative abundance of Selenomonas and Megasphaera in bacterial communities (P < 0.01). Conversely, CH4 production were significantly positively correlated with the relative abundance of Methanoplanus in archaeal communities (P < 0.01). From the perspective of CH4 gas production, the ranking of emission reduction effectiveness for different mitigation strategies is as follows: FRM group > FRH group > FRN group.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
期刊最新文献
NagPIBAF upregulation and ompO downregulation compromise oxidative stress tolerance of Stenotrophomonas maltophilia. Diversity of sulfur cycling halophiles within the Salton Sea, California's largest lake. Prospecting cellulolytic bacteria from white grubs (Holotrichia serrata (F.) and Leucopholis coneophora Burmeister) native to Karnataka region. Biochemical, coagulation, and platelet count profiles among Schistosoma mansoni infected patients attending at selected Dembiya health institutions, Northwest Ethiopia. Improved protocols for isolation of Mycobacterium ulcerans from clinical samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1