Cyto-genotoxic effects predict ecotoxicity in plant bioassays and the aquatic organism Artemia salina L.: a case study from a sewage treatment plant.

Marcela Emiliano Novaes Matilde, Leonardo Mendes da Silva, Tamara Alessandra Costa Santos, Maria Eduarda Magalhães, Marcel José Palmieri, Larissa Fonseca Andrade-Vieira
{"title":"Cyto-genotoxic effects predict ecotoxicity in plant bioassays and the aquatic organism <i>Artemia salina</i> L.: a case study from a sewage treatment plant.","authors":"Marcela Emiliano Novaes Matilde, Leonardo Mendes da Silva, Tamara Alessandra Costa Santos, Maria Eduarda Magalhães, Marcel José Palmieri, Larissa Fonseca Andrade-Vieira","doi":"10.1080/10934529.2025.2473832","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the toxicological and mutagenic potential of water samples from a Wastewater Treatment Plant (WWTP) in Lavras, Minas Gerais, Brazil. Samples were taken from four sites: upstream in the stream (P1), downstream (P2), at the entrance of the treatment station (P3), and at the exit (P4). We conducted physicochemical analyses in water, phytotoxicity tests on plants (<i>Triticum aestivum</i>, <i>Pennisetum glaucum</i>, <i>Lactuca sativa</i>, <i>Raphanus sativus</i>), cytogenotoxicity tests using onion roots (<i>Allium cepa</i>), and <i>Artemia salina</i> immobilization tests. Elevated Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), anionic surfactants, and ammoniacal nitrogen were found at P3 and P4. While germination rates were generally unaffected, P4 inhibited the germination speed of <i>R. sativus</i>. The growth of <i>L. sativa</i> increased in P3 and P4, and of <i>R. sativus</i> in P2, due to more nitrogen and phosphorus. <i>T. aestivum</i> and <i>P. glaucum</i>, however, had their growth inhibited at P4 due to surfactant toxicity. Cytogenotoxicity tests revealed the highest frequencies of micronuclei and nuclear buds in cells exposed to P3 and P4. Additionally, P3 caused 87.5% immobilization of <i>A. salina</i>. These findings suggest that the WWTP is not fully efficient, and its effluent discharge may contribute to eutrophication and genetic mutations in exposed organisms.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"1-17"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2025.2473832","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the toxicological and mutagenic potential of water samples from a Wastewater Treatment Plant (WWTP) in Lavras, Minas Gerais, Brazil. Samples were taken from four sites: upstream in the stream (P1), downstream (P2), at the entrance of the treatment station (P3), and at the exit (P4). We conducted physicochemical analyses in water, phytotoxicity tests on plants (Triticum aestivum, Pennisetum glaucum, Lactuca sativa, Raphanus sativus), cytogenotoxicity tests using onion roots (Allium cepa), and Artemia salina immobilization tests. Elevated Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), anionic surfactants, and ammoniacal nitrogen were found at P3 and P4. While germination rates were generally unaffected, P4 inhibited the germination speed of R. sativus. The growth of L. sativa increased in P3 and P4, and of R. sativus in P2, due to more nitrogen and phosphorus. T. aestivum and P. glaucum, however, had their growth inhibited at P4 due to surfactant toxicity. Cytogenotoxicity tests revealed the highest frequencies of micronuclei and nuclear buds in cells exposed to P3 and P4. Additionally, P3 caused 87.5% immobilization of A. salina. These findings suggest that the WWTP is not fully efficient, and its effluent discharge may contribute to eutrophication and genetic mutations in exposed organisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
Degradation of diclofenac using advanced oxidation processes: a review. Cyto-genotoxic effects predict ecotoxicity in plant bioassays and the aquatic organism Artemia salina L.: a case study from a sewage treatment plant. Silica dust exposure and associated pulmonary dysfunction among mine workers. Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing. Machine learning, a powerful tool for the prediction of BiVO4 nanoparticles efficiency in photocatalytic degradation of organic dyes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1