{"title":"The macaque medial prefrontal cortex simultaneously represents self and others' reward prediction error.","authors":"Atsushi Noritake, Masaki Isoda","doi":"10.1016/j.celrep.2025.115368","DOIUrl":null,"url":null,"abstract":"<p><p>Learning the causal structures of social environments involves predicting significant events (e.g., rewards) and detecting prediction errors for each agent. Whether the brain can simultaneously compute reward prediction errors for self (S-RPE) and others (O-RPE), and which neurons are responsible, is unclear. Here, we condition two monkeys with identical visual stimuli predicting different reward outcomes and find that dorsomedial prefrontal neurons represent both S-RPE and O-RPE simultaneously. Neuronal signatures of RPE are agent and sign specific, forming distinct populations for positive and negative S-RPE and O-RPE. A linear decoder trained on neurons encoding O-RPE, but not S-RPE, successfully discriminates RPE. Further investigation identifies coexisting actual reward and prediction confirmation signals for others. These results highlight the presence of neuronal mechanisms in the primate brain that update the value of environmental stimuli simultaneously for oneself and others, enabling primates to comprehend the causal structure of the world from the perspective of others.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115368"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115368","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Learning the causal structures of social environments involves predicting significant events (e.g., rewards) and detecting prediction errors for each agent. Whether the brain can simultaneously compute reward prediction errors for self (S-RPE) and others (O-RPE), and which neurons are responsible, is unclear. Here, we condition two monkeys with identical visual stimuli predicting different reward outcomes and find that dorsomedial prefrontal neurons represent both S-RPE and O-RPE simultaneously. Neuronal signatures of RPE are agent and sign specific, forming distinct populations for positive and negative S-RPE and O-RPE. A linear decoder trained on neurons encoding O-RPE, but not S-RPE, successfully discriminates RPE. Further investigation identifies coexisting actual reward and prediction confirmation signals for others. These results highlight the presence of neuronal mechanisms in the primate brain that update the value of environmental stimuli simultaneously for oneself and others, enabling primates to comprehend the causal structure of the world from the perspective of others.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.