Ze Liu, Dat P Ha, Liangguang Leo Lin, Ling Qi, Amy S Lee
{"title":"Requirements for nuclear GRP78 transcriptional regulatory activities and interaction with nuclear GRP94.","authors":"Ze Liu, Dat P Ha, Liangguang Leo Lin, Ling Qi, Amy S Lee","doi":"10.1016/j.jbc.2025.108369","DOIUrl":null,"url":null,"abstract":"<p><p>GRP78, a molecular chaperone primarily located in the endoplasmic reticulum (ER), has recently been discovered to translocate into the nucleus of stressed and cancer cells where it assumes a new function reprogramming the transcriptome. This study explores the requirements of GRP78 nuclear translocation and its transcriptional activity and investigates the role of ER-associated degradation (ERAD) in the process. We show that the ER-processed, mature form of GRP78 is the major form of nuclear GRP78 and is the form with transcriptional regulatory activity. In contrast, exogenously expressed GRP78 designed to lack its ER signal peptide, thus preventing it from entering the ER or undergoing any ER-related processing/modification, while able to enter the nucleus, lacks transcriptional regulatory activity towards E-Box containing target genes. Additionally, the ATP-binding and substrate-binding activities of GRP78 are critical for this transcriptional regulatory function. We further discover that GRP94, an ER chaperone that acts in concert with GRP78 on protein folding, can translocate to the nucleus and co-localize with nuclear GRP78 upon ER stress. These findings suggest that some form of ER processing of GRP78, in addition to cleavage of the ER signal peptide, is critical for its nuclear activity and that in stressed cells, ER chaperones may assume new functions in the nucleus yet to be explored.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108369"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108369","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GRP78, a molecular chaperone primarily located in the endoplasmic reticulum (ER), has recently been discovered to translocate into the nucleus of stressed and cancer cells where it assumes a new function reprogramming the transcriptome. This study explores the requirements of GRP78 nuclear translocation and its transcriptional activity and investigates the role of ER-associated degradation (ERAD) in the process. We show that the ER-processed, mature form of GRP78 is the major form of nuclear GRP78 and is the form with transcriptional regulatory activity. In contrast, exogenously expressed GRP78 designed to lack its ER signal peptide, thus preventing it from entering the ER or undergoing any ER-related processing/modification, while able to enter the nucleus, lacks transcriptional regulatory activity towards E-Box containing target genes. Additionally, the ATP-binding and substrate-binding activities of GRP78 are critical for this transcriptional regulatory function. We further discover that GRP94, an ER chaperone that acts in concert with GRP78 on protein folding, can translocate to the nucleus and co-localize with nuclear GRP78 upon ER stress. These findings suggest that some form of ER processing of GRP78, in addition to cleavage of the ER signal peptide, is critical for its nuclear activity and that in stressed cells, ER chaperones may assume new functions in the nucleus yet to be explored.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.