Protective effect of 2-hydroxyestrone and 2-hydroxyestradiol against chemically induced hepatotoxicity in vitro and in vivo.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacology and Experimental Therapeutics Pub Date : 2025-02-01 Epub Date: 2024-11-30 DOI:10.1016/j.jpet.2024.100050
Xi Sun, Xiangyu Hao, Yi-Chen Jia, Qi Zhang, Yan-Yin Zhu, Yong Xiao Yang, Bao Ting Zhu
{"title":"Protective effect of 2-hydroxyestrone and 2-hydroxyestradiol against chemically induced hepatotoxicity in vitro and in vivo.","authors":"Xi Sun, Xiangyu Hao, Yi-Chen Jia, Qi Zhang, Yan-Yin Zhu, Yong Xiao Yang, Bao Ting Zhu","doi":"10.1016/j.jpet.2024.100050","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a form of regulated cell death closely associated with glutathione depletion and accumulation of reactive lipid peroxides. In this study, we seek to determine whether 2-hydroxyestrone (2-OH-E<sub>1</sub>) and 2-hydroxyestradiol (2-OH-E<sub>2</sub>), 2 major metabolites of endogenous estrone (E<sub>1</sub>) and 17β-estradiol (E<sub>2</sub>) formed by cytochrome P450 in the liver, can protect against erastin- and RSL3-induced ferroptosis in hepatoma cells (H-4-II-E and HuH-7) in vitro and acetaminophen-induced mouse liver injury in vivo. We find that 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> can protect, in a dose-dependent manner, H-4-II-E hepatoma cells against erastin/RSL3-induced ferroptosis. A similar protective effect of 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> against erastin- and RSL3-induced ferroptosis is also observed in HuH-7 hepatoma cells. These 2 estrogen metabolites can strongly abrogate erastin- and RSL3-induced accumulation of cellular NO, reactive oxygen species (ROS), and lipid-ROS. Mechanistically, 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> protect cells against chemically induced ferroptosis by binding to cellular protein disulfide isomerase and then inhibiting its catalytic activity and reducing protein disulfide isomerase-mediated activation (dimerization) of inducible nitric oxide synthase, abrogating cellular NO, ROS, and lipid-ROS accumulation. Animal studies show that 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> also exhibit strong protection against acetaminophen-induced liver injury in mice. Interestingly, although E<sub>1</sub> and E<sub>2</sub> have a very weak protective effect in cultured hepatoma cells, they exhibit a similarly strong protective effect as 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> in vivo, suggesting that the metabolic conversion of E<sub>1</sub> and E<sub>2</sub> to 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> contributes importantly to their hepatoprotective effect. This study reveals that 2-OH-E<sub>1</sub> and 2-OH-E<sub>2</sub> are important endogenous factors for protection against chemically induced liver injury in vivo. SIGNIFICANCE STATEMENT: Ferroptosis is an iron-dependent and lipid reactive oxygen species-dependent form of regulated cell death. Recent evidence has shown that protein disulfide isomerase (PDI) is an important mediator of chemically induced ferroptosis and also a new target for ferroptosis protection. This study shows that 2-hydroxyestrone and 2-hydroxyestradiol are 2 inhibitors of PDI that can strongly protect against chemically induced ferroptotic hepatocyte death in vitro and in vivo. This work supports a PDI-mediated, estrogen receptor-independent mechanism of hepatocyte protection by 2-hydroxyestrone and 2-hydroxyestradiol.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100050"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpet.2024.100050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is a form of regulated cell death closely associated with glutathione depletion and accumulation of reactive lipid peroxides. In this study, we seek to determine whether 2-hydroxyestrone (2-OH-E1) and 2-hydroxyestradiol (2-OH-E2), 2 major metabolites of endogenous estrone (E1) and 17β-estradiol (E2) formed by cytochrome P450 in the liver, can protect against erastin- and RSL3-induced ferroptosis in hepatoma cells (H-4-II-E and HuH-7) in vitro and acetaminophen-induced mouse liver injury in vivo. We find that 2-OH-E1 and 2-OH-E2 can protect, in a dose-dependent manner, H-4-II-E hepatoma cells against erastin/RSL3-induced ferroptosis. A similar protective effect of 2-OH-E1 and 2-OH-E2 against erastin- and RSL3-induced ferroptosis is also observed in HuH-7 hepatoma cells. These 2 estrogen metabolites can strongly abrogate erastin- and RSL3-induced accumulation of cellular NO, reactive oxygen species (ROS), and lipid-ROS. Mechanistically, 2-OH-E1 and 2-OH-E2 protect cells against chemically induced ferroptosis by binding to cellular protein disulfide isomerase and then inhibiting its catalytic activity and reducing protein disulfide isomerase-mediated activation (dimerization) of inducible nitric oxide synthase, abrogating cellular NO, ROS, and lipid-ROS accumulation. Animal studies show that 2-OH-E1 and 2-OH-E2 also exhibit strong protection against acetaminophen-induced liver injury in mice. Interestingly, although E1 and E2 have a very weak protective effect in cultured hepatoma cells, they exhibit a similarly strong protective effect as 2-OH-E1 and 2-OH-E2 in vivo, suggesting that the metabolic conversion of E1 and E2 to 2-OH-E1 and 2-OH-E2 contributes importantly to their hepatoprotective effect. This study reveals that 2-OH-E1 and 2-OH-E2 are important endogenous factors for protection against chemically induced liver injury in vivo. SIGNIFICANCE STATEMENT: Ferroptosis is an iron-dependent and lipid reactive oxygen species-dependent form of regulated cell death. Recent evidence has shown that protein disulfide isomerase (PDI) is an important mediator of chemically induced ferroptosis and also a new target for ferroptosis protection. This study shows that 2-hydroxyestrone and 2-hydroxyestradiol are 2 inhibitors of PDI that can strongly protect against chemically induced ferroptotic hepatocyte death in vitro and in vivo. This work supports a PDI-mediated, estrogen receptor-independent mechanism of hepatocyte protection by 2-hydroxyestrone and 2-hydroxyestradiol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
期刊最新文献
Preliminary pharmacokinetics and in vivo studies indicate analgesic and stress mitigation effects of a novel NMDA receptor modulator. Metabolomic and lipidomic profiling reveals convergent pathways in attention deficit hyperactivity disorder therapeutics: Insights from established and emerging treatments. γ-Secretase modulation inhibits amyloid plaque formation and growth and stimulates plaque regression in amyloid precursor protein/presenilin-1 mice. Predicting the effects of single pathological mutations in hemophilia A and type 2N von Willebrand diseases using AlphaFold2-multimer and AlphaFold3. Managing thrombus formation with EL2-5HTVac: A selective vaccination-based approach targeting the platelet serotonin 5-HT2AR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1