Calpain inhibition in a transgenic model of calpastatin overexpression facilitates reversal of myocardial hypertrophy.

IF 3.2 2区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS ESC Heart Failure Pub Date : 2025-03-02 DOI:10.1002/ehf2.15250
Gregor Sachse, Johanna Tennigkeit, Nikolaos Pagonas, Philipp Hillmeister, Ivo Buschmann, Martin Czolbe, Peter Nordbeck, Joachim Schmitt, Daniel Patschan, Oliver Ritter
{"title":"Calpain inhibition in a transgenic model of calpastatin overexpression facilitates reversal of myocardial hypertrophy.","authors":"Gregor Sachse, Johanna Tennigkeit, Nikolaos Pagonas, Philipp Hillmeister, Ivo Buschmann, Martin Czolbe, Peter Nordbeck, Joachim Schmitt, Daniel Patschan, Oliver Ritter","doi":"10.1002/ehf2.15250","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>It was recently demonstrated that the intracellular signalling phosphatase calcineurin is subject to cleavage by the protease calpain, resulting in a truncated calcineurin fragment that is a strong inductor of myocardial hypertrophy. We now address the question of whether inhibition of calpain function in cardiomyocytes, and thereby prevention of calcineurin truncation, attenuates development of myocardial hypertrophy.</p><p><strong>Methods and results: </strong>We generated a transgenic mouse model with conditional cardiac calpastatin overexpression (CAST OE) and compared their cardiac hypertrophic response to angiotensin-II (AngII) with that of non-induced control animals. Angiotensin-II osmotic mini-pumps were removed 3 weeks after implantation and cardiac hypertrophy was re-evaluated 3 weeks after pump removal. Induction of calpastatin overexpression resulted in 88% inhibition of calpain activity and suppressed calcineurin truncation. In CAST OE mice, basal phenotype and AngII-induced myocardial hypertrophy were comparable with non-induced controls (mean heart to body weight ratios ± SD in milligrams per gram: CAST OE, 4.8 ± 0.4; CAST OE + AngII, 7.1 ± 0.5; non-induced, 4.9 ± 0.4; non-induced + AngII, 7.2 ± 0.4). However, CAST OE mice demonstrated a complete reversal of hypertrophy when angiotensin-II was removed, whereas hypertrophy persisted in non-induced controls (CAST OE 5.0 ± 0.5; non-induced 7.0 ± 0.4; P < 0.0001). Persistent hypertrophy in controls was accompanied by nuclear accumulation of truncated calcineurin and elevated activity of the Nuclear Factor of Activated T-cells pathway. Moreover, we found that truncated calcineurin was insufficiently ubiquitinylated compared with its full-length form and thus escaped degradation over several weeks in our in vivo experiments.</p><p><strong>Conclusions: </strong>Our data demonstrate that calpain-mediated cleavage results in nuclear accumulation of a truncated, constitutively active and degradation-resistant calcineurin isoform that sustains a long-term myocardial hypertrophic response to angiotensin-II beyond withdrawal of the stimulus. Cardiomyocyte specific calpain inhibition by transgenic calpastatin overexpression prevented the post-stimulus myocardial hypertrophic response.</p>","PeriodicalId":11864,"journal":{"name":"ESC Heart Failure","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESC Heart Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ehf2.15250","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: It was recently demonstrated that the intracellular signalling phosphatase calcineurin is subject to cleavage by the protease calpain, resulting in a truncated calcineurin fragment that is a strong inductor of myocardial hypertrophy. We now address the question of whether inhibition of calpain function in cardiomyocytes, and thereby prevention of calcineurin truncation, attenuates development of myocardial hypertrophy.

Methods and results: We generated a transgenic mouse model with conditional cardiac calpastatin overexpression (CAST OE) and compared their cardiac hypertrophic response to angiotensin-II (AngII) with that of non-induced control animals. Angiotensin-II osmotic mini-pumps were removed 3 weeks after implantation and cardiac hypertrophy was re-evaluated 3 weeks after pump removal. Induction of calpastatin overexpression resulted in 88% inhibition of calpain activity and suppressed calcineurin truncation. In CAST OE mice, basal phenotype and AngII-induced myocardial hypertrophy were comparable with non-induced controls (mean heart to body weight ratios ± SD in milligrams per gram: CAST OE, 4.8 ± 0.4; CAST OE + AngII, 7.1 ± 0.5; non-induced, 4.9 ± 0.4; non-induced + AngII, 7.2 ± 0.4). However, CAST OE mice demonstrated a complete reversal of hypertrophy when angiotensin-II was removed, whereas hypertrophy persisted in non-induced controls (CAST OE 5.0 ± 0.5; non-induced 7.0 ± 0.4; P < 0.0001). Persistent hypertrophy in controls was accompanied by nuclear accumulation of truncated calcineurin and elevated activity of the Nuclear Factor of Activated T-cells pathway. Moreover, we found that truncated calcineurin was insufficiently ubiquitinylated compared with its full-length form and thus escaped degradation over several weeks in our in vivo experiments.

Conclusions: Our data demonstrate that calpain-mediated cleavage results in nuclear accumulation of a truncated, constitutively active and degradation-resistant calcineurin isoform that sustains a long-term myocardial hypertrophic response to angiotensin-II beyond withdrawal of the stimulus. Cardiomyocyte specific calpain inhibition by transgenic calpastatin overexpression prevented the post-stimulus myocardial hypertrophic response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ESC Heart Failure
ESC Heart Failure Medicine-Cardiology and Cardiovascular Medicine
CiteScore
7.00
自引率
7.90%
发文量
461
审稿时长
12 weeks
期刊介绍: ESC Heart Failure is the open access journal of the Heart Failure Association of the European Society of Cardiology dedicated to the advancement of knowledge in the field of heart failure. The journal aims to improve the understanding, prevention, investigation and treatment of heart failure. Molecular and cellular biology, pathology, physiology, electrophysiology, pharmacology, as well as the clinical, social and population sciences all form part of the discipline that is heart failure. Accordingly, submission of manuscripts on basic, translational, clinical and population sciences is invited. Original contributions on nursing, care of the elderly, primary care, health economics and other specialist fields related to heart failure are also welcome, as are case reports that highlight interesting aspects of heart failure care and treatment.
期刊最新文献
Refractory heart failure due to acquired aortic coarctation after total arch replacement: find the right antidote! Delayed cardiac consequences unveiled by magnetic resonance imaging in a high-voltage electric shock survivor. Impact of immigration on outcomes following acute decompensated heart failure: A retrospective cohort study. Mono and combination therapies in pulmonary arterial hypertension patients with comorbidities: A COMPERA analysis. Electron microscopic findings predict clinical outcomes in patients with non-ischaemic cardiomyopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1