Identify key genes and biological processes participated in obesity-related cancer based on studying 12 cancers

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biochemistry & Cell Biology Pub Date : 2025-02-27 DOI:10.1016/j.biocel.2025.106764
Lijuan Zhu , Cuicui Zhao
{"title":"Identify key genes and biological processes participated in obesity-related cancer based on studying 12 cancers","authors":"Lijuan Zhu ,&nbsp;Cuicui Zhao","doi":"10.1016/j.biocel.2025.106764","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity significantly increases the risk of various diseases, particularly cancers, which present a serious threat to public health. Therefore, identifying cancers related to obesity and exploring their pathological pathways and key genes are highly significant for the prevention and treatment of these cancers. In this study, we propose the obesity and cancer edge connectivity based on expanded modular disease genes and expanded modular networks (OCEC_eDMN) algorithm, which based on the disease-related genes, Biological Process (BP) genes, and Protein-Potein Interaction (PPI) network. The algorithm utilizes Random Walk with Restart (RWR) to expand BP genes and disease genes to generate the expanded modular networks (eMNs) and disease genes (eMDs). Finally, this algorithm calculates the average interaction number between eMDs on eMNs. We utilize OCEC_eDMN to predict the ranking of 12 cancers related to obesity/morbid obesity and obtain an AUC of 0.93/0.84. Additionally, OCEC_eDMN reveals the significant BPs associated with obesity-cancer connections. For instance, \"gluconeogenesis\" plays a critical role in the connections between obesity and cancers. Through key driver analysis (KDA) on eMDs, we identify the key connectors in obesity-cancer connections. Genes such as GRB2 are instrumental in linking morbid obesity to colorectal cancer in the eMNs of “response to molecule of bacterial origin”. The significant eMNs and key genes provide valuable references for the prevention and treatment of obesity-related cancers and carry important theoretical implications.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"182 ","pages":"Article 106764"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272525000317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity significantly increases the risk of various diseases, particularly cancers, which present a serious threat to public health. Therefore, identifying cancers related to obesity and exploring their pathological pathways and key genes are highly significant for the prevention and treatment of these cancers. In this study, we propose the obesity and cancer edge connectivity based on expanded modular disease genes and expanded modular networks (OCEC_eDMN) algorithm, which based on the disease-related genes, Biological Process (BP) genes, and Protein-Potein Interaction (PPI) network. The algorithm utilizes Random Walk with Restart (RWR) to expand BP genes and disease genes to generate the expanded modular networks (eMNs) and disease genes (eMDs). Finally, this algorithm calculates the average interaction number between eMDs on eMNs. We utilize OCEC_eDMN to predict the ranking of 12 cancers related to obesity/morbid obesity and obtain an AUC of 0.93/0.84. Additionally, OCEC_eDMN reveals the significant BPs associated with obesity-cancer connections. For instance, "gluconeogenesis" plays a critical role in the connections between obesity and cancers. Through key driver analysis (KDA) on eMDs, we identify the key connectors in obesity-cancer connections. Genes such as GRB2 are instrumental in linking morbid obesity to colorectal cancer in the eMNs of “response to molecule of bacterial origin”. The significant eMNs and key genes provide valuable references for the prevention and treatment of obesity-related cancers and carry important theoretical implications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
124
审稿时长
19 days
期刊介绍: IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research. Topics of interest include, but are not limited to: -Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism -Novel insights into disease pathogenesis -Nanotechnology with implication to biological and medical processes -Genomics and bioinformatics
期刊最新文献
Identify key genes and biological processes participated in obesity-related cancer based on studying 12 cancers Editorial Board SIRT2 inhibition attenuates myofibroblast transition through autophagy-mediated ciliogenesis in renal epithelial cells Enhancement of wound healing in diabetic mice by topical use of a peptide-ionic liquid conjugate Expression analysis of molecular chaperones associated with disaggregation complex in rotenone-induced Parkinsonian rat model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1