{"title":"Quality assessment of automatically planned o-ring linac SBRT plans for pelvic lymph node and lung metastases, evaluating the optimal minimum target size.","authors":"Katerine Viviana Díaz Hernández, Sergejs Unterkirhers, Uwe Schneider","doi":"10.1016/j.meddos.2025.01.008","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to assess the influence of Planning Target Volume (PTV) on the quality of automatic planned O-Ring Halcyon linac stereotactic body radiation therapy (SBRT) plans of pelvic lymph nodes (LN) and lung metastases and to evaluate an absolute PTV volume threshold as a plan quality prediction criterion. A total of 21 pelvic LN and 18 lung clinical treatment plans were replanned for Halcyon with unattended autoplanning. The prescription dose range was 26-40 Gy for LN and between 39-54 Gy for the lung in the mean 3 fractions. The mean/median PTV was 4.0/ 3.6 cm<sup>3</sup> for LN and 4.9/ 4.3 cm<sup>3</sup> for the lung. The criteria for the plan quality evaluation consisted of using dose metrics for conformity, spillage, and coverage and dose limits on healthy tissue assessment. A statistical study was performed based on systematic Mann-Whitney U test and cluster analysis to evaluate a PTV volume predictor threshold of plan quality. 95% (n = 20) LN and 100% (n = 18) lung plans met all tolerance criteria. For both cohorts of plans, a PTV threshold was determined, indicating a reduction of particular dose indices when below this threshold. Low risk of toxicity in healthy tissues was predicted. A PTV threshold of 4.0 cm<sup>3</sup> was estimated as quality criteria in both cohorts of plans. The results of our study demonstrated the promising performance of Halcyon for pelvic and lung SBRT for small tumors, although plan-specific QA is required to verify machine performance during plan delivery.</p>","PeriodicalId":49837,"journal":{"name":"Medical Dosimetry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Dosimetry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meddos.2025.01.008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to assess the influence of Planning Target Volume (PTV) on the quality of automatic planned O-Ring Halcyon linac stereotactic body radiation therapy (SBRT) plans of pelvic lymph nodes (LN) and lung metastases and to evaluate an absolute PTV volume threshold as a plan quality prediction criterion. A total of 21 pelvic LN and 18 lung clinical treatment plans were replanned for Halcyon with unattended autoplanning. The prescription dose range was 26-40 Gy for LN and between 39-54 Gy for the lung in the mean 3 fractions. The mean/median PTV was 4.0/ 3.6 cm3 for LN and 4.9/ 4.3 cm3 for the lung. The criteria for the plan quality evaluation consisted of using dose metrics for conformity, spillage, and coverage and dose limits on healthy tissue assessment. A statistical study was performed based on systematic Mann-Whitney U test and cluster analysis to evaluate a PTV volume predictor threshold of plan quality. 95% (n = 20) LN and 100% (n = 18) lung plans met all tolerance criteria. For both cohorts of plans, a PTV threshold was determined, indicating a reduction of particular dose indices when below this threshold. Low risk of toxicity in healthy tissues was predicted. A PTV threshold of 4.0 cm3 was estimated as quality criteria in both cohorts of plans. The results of our study demonstrated the promising performance of Halcyon for pelvic and lung SBRT for small tumors, although plan-specific QA is required to verify machine performance during plan delivery.
期刊介绍:
Medical Dosimetry, the official journal of the American Association of Medical Dosimetrists, is the key source of information on new developments for the medical dosimetrist. Practical and comprehensive in coverage, the journal features original contributions and review articles by medical dosimetrists, oncologists, physicists, and radiation therapy technologists on clinical applications and techniques of external beam, interstitial, intracavitary and intraluminal irradiation in cancer management. Articles dealing primarily with physics will be reviewed by a specially appointed team of experts in the field.