The sandwich-shaped double S-scheme heterojuction OCN/BiOCl/Bi24O31Cl10 efficiently degrades levofloxacin and its charge transfer mechanism

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2025-03-04 DOI:10.1016/j.jcat.2025.116055
Yuan Wei , Chao Liu , Tian-Tian Wang , Hong-Yu Wang , Yu-Miao Yang , Gao-Feng Shi , Guo-Ying Wang
{"title":"The sandwich-shaped double S-scheme heterojuction OCN/BiOCl/Bi24O31Cl10 efficiently degrades levofloxacin and its charge transfer mechanism","authors":"Yuan Wei ,&nbsp;Chao Liu ,&nbsp;Tian-Tian Wang ,&nbsp;Hong-Yu Wang ,&nbsp;Yu-Miao Yang ,&nbsp;Gao-Feng Shi ,&nbsp;Guo-Ying Wang","doi":"10.1016/j.jcat.2025.116055","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid recombination rate of photogenerated charges presents considerable challenges for the rational design of high-performance, stable photocatalysts. In this study, we integrated the characteristics of oxygen doping and heterojunctions into oxygen-doped g-C<sub>3</sub>N<sub>4</sub>/BiOCl/Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> (OCN/BiOCl/Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>) using a straightforward impregnation-calcination method. Oxygen doping disrupts the symmetric atomic arrangement in pure-phase samples, optimizing the electronic configuration of active sites at the reaction interface and enhancing the coupling between anions and cations. The introduction of BiOCl, which offers an excellent coordination environment, in conjunction with Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>, creates a dual-S heterojunction. This structure establishes dual reaction interfaces that facilitate efficient dual electron ’transport channels,’ promoting the rapid transfer of charge carriers among OCN, BiOCl, and Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>. Experimental results demonstrate that the OCN/BiOCl/Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> heterojunction material achieves a degradation efficiency of 96.1 % for 10 mg·L<sup>−1</sup> levofloxacin under visible light. Notably, in situ measurements obtained through Kelvin probe force microscopy (KPFM) and density functional theory (DFT) calculations jointly reveal a unique chemical environment and electronic structure arising from the formation of an internal electric field among OCN, BiOCl, and Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>, thereby providing enhanced pathways for the migration of photogenerated charge carriers. Furthermore, the heterostructure significantly reduces the transport distance of photogenically induced charges and decreases internal transport resistance, thereby improving the separation efficiency of photogenerated electron-hole pairs. This mechanism is crucial for the markedly enhanced photocatalytic degradation performance of OCN, BiOCl, and Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> materials. In summary, this work explores the synergistic effects among multiple modifications, providing insights for the precise design of efficient and stable photocatalytic degradation systems.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"446 ","pages":"Article 116055"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951725001204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid recombination rate of photogenerated charges presents considerable challenges for the rational design of high-performance, stable photocatalysts. In this study, we integrated the characteristics of oxygen doping and heterojunctions into oxygen-doped g-C3N4/BiOCl/Bi24O31Cl10 (OCN/BiOCl/Bi24O31Cl10) using a straightforward impregnation-calcination method. Oxygen doping disrupts the symmetric atomic arrangement in pure-phase samples, optimizing the electronic configuration of active sites at the reaction interface and enhancing the coupling between anions and cations. The introduction of BiOCl, which offers an excellent coordination environment, in conjunction with Bi24O31Cl10, creates a dual-S heterojunction. This structure establishes dual reaction interfaces that facilitate efficient dual electron ’transport channels,’ promoting the rapid transfer of charge carriers among OCN, BiOCl, and Bi24O31Cl10. Experimental results demonstrate that the OCN/BiOCl/Bi24O31Cl10 heterojunction material achieves a degradation efficiency of 96.1 % for 10 mg·L−1 levofloxacin under visible light. Notably, in situ measurements obtained through Kelvin probe force microscopy (KPFM) and density functional theory (DFT) calculations jointly reveal a unique chemical environment and electronic structure arising from the formation of an internal electric field among OCN, BiOCl, and Bi24O31Cl10, thereby providing enhanced pathways for the migration of photogenerated charge carriers. Furthermore, the heterostructure significantly reduces the transport distance of photogenically induced charges and decreases internal transport resistance, thereby improving the separation efficiency of photogenerated electron-hole pairs. This mechanism is crucial for the markedly enhanced photocatalytic degradation performance of OCN, BiOCl, and Bi24O31Cl10 materials. In summary, this work explores the synergistic effects among multiple modifications, providing insights for the precise design of efficient and stable photocatalytic degradation systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三明治形双s结构异质结OCN/BiOCl/Bi24O31Cl10高效降解左氧氟沙星及其电荷转移机制
光生电荷的快速复合速度对合理设计高性能、稳定的光催化剂提出了相当大的挑战。在这项研究中,我们将氧掺杂和异质结的特性整合到氧掺杂的g-C3N4/BiOCl/Bi24O31Cl10 (OCN/BiOCl/Bi24O31Cl10)中,采用直接浸渍-煅烧方法。氧掺杂破坏了纯相样品的对称原子排列,优化了反应界面活性位点的电子构型,增强了阴离子和阳离子之间的耦合。BiOCl的引入提供了一个良好的协调环境,与Bi24O31Cl10结合,形成了双s异质结。这种结构建立了双反应界面,促进了高效的双电子“传输通道”,促进了OCN、BiOCl和Bi24O31Cl10之间载流子的快速转移。实验结果表明,OCN/BiOCl/Bi24O31Cl10异质结材料在可见光下对10 mg·L−1左氧氟沙星的降解效率为96.1 %。值得注意的是,通过开尔文探针力显微镜(KPFM)和密度功能理论(DFT)计算获得的原位测量结果共同揭示了OCN、BiOCl和Bi24O31Cl10之间形成内部电场所产生的独特化学环境和电子结构,从而为光生载流子的迁移提供了增强途径。此外,异质结构显著减小了光诱导电荷的输运距离,降低了内部输运阻力,从而提高了光生电子-空穴对的分离效率。这一机制是OCN、BiOCl和Bi24O31Cl10材料显著增强光催化降解性能的关键。总之,这项工作探索了多种修饰之间的协同效应,为精确设计高效稳定的光催化降解系统提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
CO2-promoted photocatalytic oxidation of benzylic alcohols over CdS/boron-doped carbon nitride Photocatalytic H2 production from HCOOH over Pd/TiO2: Pd2+/Pd0 self-cycle and adsorption-induced electron transfer mechanism Unraveling the evolution of oxygen species and its role in adjusting catalytic performance over LaAlO3-based catalysts in oxidative coupling of methane Bio-derived quantum dot based luminescent solar concentrator for photocatalytic conversion of fructose to 5-hydroxymethylfurfural via iron(II) complex catalysis Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1