Sibasish Laha, Eileen T. Meyer, Dev R. Sadaula, Ritesh Ghosh, Dhrubojyoti Sengupta, Megan Masterson, Onic I. Shuvo, Matteo Guainazzi, Claudio Ricci, Mitchell C. Begelman, Alexander Philippov, Rostom Mbarek, Amelia M. Hankla, Erin Kara, Francesca Panessa, Ehud Behar, Haocheng Zhang, Fabio Pacucci, Main Pal, Federica Ricci, Ilaria Villani, Susanna Bisogni, Fabio La Franca, Stefano Bianchi, Gabriele Bruni, Samantha Oates, Cameron Hahn, Matt Nicholl, S. Bradley Cenko, Sabyasachi Chattopadhyay, Josefa Becerra González, J. A. Acosta–Pulido, Suvendu Rakshit, Jiří Svoboda, Luigi Gallo, Adam Ingram and Darshan Kakkad
{"title":"Multiwavelength Observations of a Jet Launch in Real Time from the Post-changing-look Active Galaxy 1ES 1927+654","authors":"Sibasish Laha, Eileen T. Meyer, Dev R. Sadaula, Ritesh Ghosh, Dhrubojyoti Sengupta, Megan Masterson, Onic I. Shuvo, Matteo Guainazzi, Claudio Ricci, Mitchell C. Begelman, Alexander Philippov, Rostom Mbarek, Amelia M. Hankla, Erin Kara, Francesca Panessa, Ehud Behar, Haocheng Zhang, Fabio Pacucci, Main Pal, Federica Ricci, Ilaria Villani, Susanna Bisogni, Fabio La Franca, Stefano Bianchi, Gabriele Bruni, Samantha Oates, Cameron Hahn, Matt Nicholl, S. Bradley Cenko, Sabyasachi Chattopadhyay, Josefa Becerra González, J. A. Acosta–Pulido, Suvendu Rakshit, Jiří Svoboda, Luigi Gallo, Adam Ingram and Darshan Kakkad","doi":"10.3847/1538-4357/adaea0","DOIUrl":null,"url":null,"abstract":"We present results from a high-cadence multiwavelength observational campaign of the enigmatic changing-look active galactic nucleus 1ES 1927+654 from 2022 May to 2024 April, coincident with an unprecedented radio flare (an increase in flux by a factor of ∼60 over a few months) and the emergence of a spatially resolved jet at 0.1–0.3 pc scales. Companion work has also detected a recurrent quasi-periodic oscillation (QPO) in the 2–10 keV band with an increasing frequency (1–2 mHz) over the same period. During this time, the soft X-rays (0.3–2 keV) monotonically increased by a factor of ∼8, while the UV emission remained nearly steady with <30% variation and the 2–10 keV flux showed variation by a factor ≲2. The weak variation of the 2–10 keV X-ray emission and the stability of the UV emission suggest that the magnetic energy density and accretion rate are relatively unchanged and that the jet could be launched owing to a reconfiguration of the magnetic field (toroidal to poloidal) close to the black hole. Advecting poloidal flux onto the event horizon would trigger the Blandford–Znajek mechanism, leading to the onset of the jet. The concurrent softening of the coronal slope (from Γ = 2.70 ± 0.04 to Γ = 3.27 ± 0.04), the appearance of a QPO, and the low coronal temperature ( ) during the radio outburst suggest that the poloidal field reconfiguration can significantly impact coronal properties and thus influence jet dynamics. These extraordinary findings in real time are crucial for coronal and jet plasma studies, particularly as our results are independent of coronal geometry.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adaea0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present results from a high-cadence multiwavelength observational campaign of the enigmatic changing-look active galactic nucleus 1ES 1927+654 from 2022 May to 2024 April, coincident with an unprecedented radio flare (an increase in flux by a factor of ∼60 over a few months) and the emergence of a spatially resolved jet at 0.1–0.3 pc scales. Companion work has also detected a recurrent quasi-periodic oscillation (QPO) in the 2–10 keV band with an increasing frequency (1–2 mHz) over the same period. During this time, the soft X-rays (0.3–2 keV) monotonically increased by a factor of ∼8, while the UV emission remained nearly steady with <30% variation and the 2–10 keV flux showed variation by a factor ≲2. The weak variation of the 2–10 keV X-ray emission and the stability of the UV emission suggest that the magnetic energy density and accretion rate are relatively unchanged and that the jet could be launched owing to a reconfiguration of the magnetic field (toroidal to poloidal) close to the black hole. Advecting poloidal flux onto the event horizon would trigger the Blandford–Znajek mechanism, leading to the onset of the jet. The concurrent softening of the coronal slope (from Γ = 2.70 ± 0.04 to Γ = 3.27 ± 0.04), the appearance of a QPO, and the low coronal temperature ( ) during the radio outburst suggest that the poloidal field reconfiguration can significantly impact coronal properties and thus influence jet dynamics. These extraordinary findings in real time are crucial for coronal and jet plasma studies, particularly as our results are independent of coronal geometry.