Powerful Explosions from the Collapse of Rotating Supermassive Stars

Sho Fujibayashi, Cédric Jockel, Kyohei Kawaguchi, Yuichiro Sekiguchi and Masaru Shibata
{"title":"Powerful Explosions from the Collapse of Rotating Supermassive Stars","authors":"Sho Fujibayashi, Cédric Jockel, Kyohei Kawaguchi, Yuichiro Sekiguchi and Masaru Shibata","doi":"10.3847/1538-4357/adb0b8","DOIUrl":null,"url":null,"abstract":"We perform new general relativistic hydrodynamics simulations for collapses of rotating supermassive star cores with an approximate nuclear burning up to carbon and a detailed equation of state. For all the models we investigate, the energy generation by nuclear burning plays only a minor role, leading to the formation of a black hole without a nuclear-powered explosion. For rotating models, however, the stellar explosion associated with shock heating is driven from a torus, which forms after the black hole formation. The explosion energy is up to 10−4 of the mass energy of the supermassive star cores (∼1055–1056 erg). We find that, even if we increase the rotational angular momentum of the progenitor, the ejecta mass saturates at ∼1% of the total mass of the initial stellar core. The average ejecta velocity also saturates at ≈20% of the speed of light. As a result, the ejecta kinetic energy is approximately proportional to the initial mass of the supermassive star core for the rapidly rotating case. We also perform viscous hydrodynamics simulations to explore the evolution of the remnant torus. Although the viscous heating drives an outflow from the torus, we find that its effect is subdominant in terms of the kinetic energy because of the small velocity (≈0.07c) of the ejecta component.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"12 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adb0b8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We perform new general relativistic hydrodynamics simulations for collapses of rotating supermassive star cores with an approximate nuclear burning up to carbon and a detailed equation of state. For all the models we investigate, the energy generation by nuclear burning plays only a minor role, leading to the formation of a black hole without a nuclear-powered explosion. For rotating models, however, the stellar explosion associated with shock heating is driven from a torus, which forms after the black hole formation. The explosion energy is up to 10−4 of the mass energy of the supermassive star cores (∼1055–1056 erg). We find that, even if we increase the rotational angular momentum of the progenitor, the ejecta mass saturates at ∼1% of the total mass of the initial stellar core. The average ejecta velocity also saturates at ≈20% of the speed of light. As a result, the ejecta kinetic energy is approximately proportional to the initial mass of the supermassive star core for the rapidly rotating case. We also perform viscous hydrodynamics simulations to explore the evolution of the remnant torus. Although the viscous heating drives an outflow from the torus, we find that its effect is subdominant in terms of the kinetic energy because of the small velocity (≈0.07c) of the ejecta component.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and Numerical Studies of the Collapse of Dense Clouds Induced by Herbig–Haro Stellar Jets UNCOVER: 404 Error—Models Not Found for the Triply Imaged Little Red Dot A2744-QSO1* BATSRUS GPU: Faster-than-real-time Magnetospheric Simulations with a Block-adaptive Grid Code Signature of a Seyfert-like Component in Blazar 3C 273 and Its Reflection-based Explanation Measuring the Interstellar Medium Content of Nearby, Luminous, Type 1 and Type 2 QSOs through CO and [C ii]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1