{"title":"Effect of architectural asymmetry of hyperbranched block copolymers on their phase boundaries","authors":"Jiahao Shi, Qingshu Dong, Tao Yang, Weihua Li","doi":"10.1039/d4cp04814h","DOIUrl":null,"url":null,"abstract":"Asymmetric architecture of AB-type block copolymers can induce additional spontaneous curvature to A/B interface, accordingly deflecting the phase boundaries. However, it is often difficult to determine or compare the asymmetric effects of different asymmetric architectures. In this work, we proposed to use the equivalent arm numbers n<small><sub>equ</sub></small>, which was originally defined as n<small><sub>equ</sub></small> = n/iÐ for AB<small><sub>n</sub></small> with unequal B-arms and iÐ being the intramolecular polydispersity of these B-arms, to quantify the asymmetric effect of various linear-hyperbranched copolymers. For each linear-hyperbranched copolymer, nequis estimated by matching its phase boundaries on the side with expanded spherical phase region with those of AB<small><sub>n</sub></small> with unequal B-arms but tunable iÐ. Our results suggest that the addition of B-blocks at the further location from the A-B joint point has less influence on n<small><sub>equ</sub></small>, i.e. the asymmetric effect, because these B-blocks can access more space. For the linear-dendrimer copolymers, n<small><sub>equ</sub></small> changes from 2 to about 3.8 when the overall generation number of the copolymer increases from 2 to 5. In other words, the asymmetric effect of these linear-dendrimer copolymers is intermediate between those of AB<small><sub>2</sub></small> and AB<small><sub>4</sub></small> miktoarm star copolymers. In brief, n<small><sub>equ</sub></small> can effectively describe the asymmetric effect on the interfacial curvature of complex asymmetric architectures.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"67 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04814h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Asymmetric architecture of AB-type block copolymers can induce additional spontaneous curvature to A/B interface, accordingly deflecting the phase boundaries. However, it is often difficult to determine or compare the asymmetric effects of different asymmetric architectures. In this work, we proposed to use the equivalent arm numbers nequ, which was originally defined as nequ = n/iÐ for ABn with unequal B-arms and iÐ being the intramolecular polydispersity of these B-arms, to quantify the asymmetric effect of various linear-hyperbranched copolymers. For each linear-hyperbranched copolymer, nequis estimated by matching its phase boundaries on the side with expanded spherical phase region with those of ABn with unequal B-arms but tunable iÐ. Our results suggest that the addition of B-blocks at the further location from the A-B joint point has less influence on nequ, i.e. the asymmetric effect, because these B-blocks can access more space. For the linear-dendrimer copolymers, nequ changes from 2 to about 3.8 when the overall generation number of the copolymer increases from 2 to 5. In other words, the asymmetric effect of these linear-dendrimer copolymers is intermediate between those of AB2 and AB4 miktoarm star copolymers. In brief, nequ can effectively describe the asymmetric effect on the interfacial curvature of complex asymmetric architectures.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.