Chad R. Schultz, Bilal Aleiwi, X. Edward Zhou, Kelly Suino-Powell, Karsten Melcher, Nuno M. S. Almeida, Angela K. Wilson, Edmund L. Ellsworth, André S. Bachmann
{"title":"Design, Synthesis, and Biological Activity of Novel Ornithine Decarboxylase (ODC) Inhibitors","authors":"Chad R. Schultz, Bilal Aleiwi, X. Edward Zhou, Kelly Suino-Powell, Karsten Melcher, Nuno M. S. Almeida, Angela K. Wilson, Edmund L. Ellsworth, André S. Bachmann","doi":"10.1021/acs.jmedchem.4c03120","DOIUrl":null,"url":null,"abstract":"We here describe the design, synthesis, and biological activity of novel ornithine decarboxylase (ODC) inhibitors that show significantly higher potency <i>in vitro</i> than α-difluoromethylornithine (DFMO), a U.S. Food and Drug Administration (FDA) approved drug. We report two X-ray structures of ODC complexed with new ODC inhibitors, computational docking, molecular dynamics, and binding free energy calculations to validate the experimental models. The X-ray structures reveal that covalent adducts with pyridoxal phosphate (PLP) are formed in the active site of the human ODC enzyme, as verified by their preparation and enzymatic testing. Finally, we verified that the cellular activity of endogenous ODC was inhibited, and polyamine levels were reduced. Given that ODC is a clinically validated target, combined with the fact that DFMO is currently the only ODC inhibitor in clinical use for several indications, the further development of more potent ODC inhibitors with superior activity and physical properties is warranted.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"41 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c03120","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We here describe the design, synthesis, and biological activity of novel ornithine decarboxylase (ODC) inhibitors that show significantly higher potency in vitro than α-difluoromethylornithine (DFMO), a U.S. Food and Drug Administration (FDA) approved drug. We report two X-ray structures of ODC complexed with new ODC inhibitors, computational docking, molecular dynamics, and binding free energy calculations to validate the experimental models. The X-ray structures reveal that covalent adducts with pyridoxal phosphate (PLP) are formed in the active site of the human ODC enzyme, as verified by their preparation and enzymatic testing. Finally, we verified that the cellular activity of endogenous ODC was inhibited, and polyamine levels were reduced. Given that ODC is a clinically validated target, combined with the fact that DFMO is currently the only ODC inhibitor in clinical use for several indications, the further development of more potent ODC inhibitors with superior activity and physical properties is warranted.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.